浏览全部资源
扫码关注微信
山西大学资源与环境工程研究所 CO2减排与资源化利用教育部工程研究中心 太原 030006
E-mail: zhaozanxu@sxu.edu.cn
cfangqin@sxu.edu.cn
纸质出版日期:2023-12-20,
网络出版日期:2023-09-08,
收稿日期:2023-05-17,
录用日期:2023-07-04
扫 描 看 全 文
陈琛,党杰,李小雨等.“点击化学”离子化聚砜对磺化聚醚醚酮/聚砜共混膜性能的影响研究[J].高分子学报,2023,54(12):1899-1910.
Chen Chen,Dang Jie,Li Xiao-yu,et al.Effect of Ionized Polysulfone via Click Chemistry on the Property and Separation Performance of Sulfonated Polyether Ether Ketone/Polysulfone Blend Membrane[J].Acta Polymerica Sinica,2023,54(12):1899-1910.
陈琛,党杰,李小雨等.“点击化学”离子化聚砜对磺化聚醚醚酮/聚砜共混膜性能的影响研究[J].高分子学报,2023,54(12):1899-1910. DOI: 10.11777/j.issn1000-3304.2023.23135.
Chen Chen,Dang Jie,Li Xiao-yu,et al.Effect of Ionized Polysulfone via Click Chemistry on the Property and Separation Performance of Sulfonated Polyether Ether Ketone/Polysulfone Blend Membrane[J].Acta Polymerica Sinica,2023,54(12):1899-1910. DOI: 10.11777/j.issn1000-3304.2023.23135.
为制备氢离子/二价金属离子渗透选择性优异的阳离子交换膜,探究功能基团(季铵基团、羧基)含量对膜性能的影响规律,采用“点击化学”反应,在聚砜(PSF)侧链接枝季铵基团和羧基获得离子化PSF,将其与磺化聚醚醚酮(SPEEK)共混制备阳离子交换膜,分别通过离子化PSF添加量、功能化度和侧链阴阳离子比例调控共混膜中季铵基团含量,探究其对膜性能的影响规律. 膜对氢离子和亚铁离子的渗透选择性随着离子化PSF含量和功能化度的增加均呈现先升高后降低的趋势,当离子化PSF的季铵与羧基比例为1:1时,共混膜的渗透选择性最佳. 季铵基团与磺酸基形成离子对有利于抑制膜溶胀,通过Donnan排斥和尺寸筛分效应提高阳离子交换膜的渗透选择性;但当季铵基团的含量超过一定值,离子簇的形成导致其在膜内分布不均,膜的渗透选择性有所降低. 羧基则通过形成氢键减小膜的氢离子渗透性降低幅度.
In order to fabricate cation exchange membrane with good permselectivity of proton/divalent metal ions
the influence of functional group (quaternary ammonium group and carboxyl group) content on the membrane performance was investigated. The ionic polysulfone (PSF) with pendent quaternary ammonium group and carboxyl group was synthesized by "click chemistry" reaction and blended into sulfonated polyether ether ketone (SPEEK). The content of quaternary ammonium group in the blend membrane was adjusted by the amount of ionized PSF
the functionalization degree of PSF and the ratio of quaternary ammonium group to carboxyl group
respectively. With the increase of ionized PSF content
the water uptake rate
swelling degree and proton flux of blend membrane gradually decreased
while the membrane surface resistance increased. The permselectivity of blend membrane for hydrogen and ferrous ions increased first and then decreased with the increase of ionized PSF content. When the ionized PSF content was 40%
the highest permselectivity of blend membrane (312.86) was obtained
which was 38 times that of SPEEK. Its proton flux (3.51 mmol·m
-2
·s
-1
) decreased to 38% that of SPEEK membrane (9.23 mmol·m
-2
·s
-1
). The permselectivity of blend membrane increased first and then decreased with the increasing functionalization degree of ionized PSF. The permselectivity of PSF-X10Y10 membrane was 12 times and 3.5 times that of PSF-X6Y6 and PSF-X15Y15 membranes
respectively. The permselectivity of PSF-X10Y10 membrane was 4 times and twice that of PSF-X7Y13 and PSF-X13Y7 membranes
respectively. The formation of ion pairs between quaternary ammonium group and sulfonic acid group was beneficial to inhibit membrane swelling
and the permselectivity of membrane was improved
via
Donnan repulsion and size-sieving effect. However
when the content of quaternary ammonium group exceeds a certain value
the formation of ion clusters leads to the uneven distribution of functional groups in the membrane
and the permselectivity of the membrane decreases. The reduction extent of proton flux could be decreased by increased carboxyl group content
via
the formation of hydrogen bond.
阳离子交换膜渗透选择性点击化学离子簇
Cation exchange membranePermselectivityClick chemistryIon cluster
鲁秀国, 黄林长, 杨凌焱, 段建菊. 酸洗废液的资源化处理的研究综述. 现代化工, 2017, 37(4), 46-49. doi:10.16606/j.cnki.issn 0253-4320.2017.04.011http://dx.doi.org/10.16606/j.cnki.issn 0253-4320.2017.04.011
秦松岩, 方玉倩, 赵立新. 无机废酸分离回收技术研究进展. 应用化工, 2021, 50(1), 204-209. doi:10.3969/j.issn.1671-3206.2021.01.046http://dx.doi.org/10.3969/j.issn.1671-3206.2021.01.046
葛倩倩, 葛亮, 汪耀明, 徐铜文. 离子交换膜的发展态势与应用展望. 化工进展, 2016, 35(6), 1774-1785.
Luo J. Y.; Wu C. M.; Xu T. W.; Wu Y. H. Diffusion dialysis-concept, principle and applications. J. Membr. Sci., 2011, 366(1-2), 1-16. doi:10.1016/j.memsci.2010.10.028http://dx.doi.org/10.1016/j.memsci.2010.10.028
Deng T.; Zeng X. J.; Zhang C. Y.; Wang Y. X.; Zhang W. Constructing proton selective pathways using MOFs to enhance acid recovery efficiency of anion exchange membranes. Chem. Eng. J., 2022, 445, 136752. doi:10.1016/j.cej.2022.136752http://dx.doi.org/10.1016/j.cej.2022.136752
Ge L.; Mondal A. N.; Liu X. H.; Wu B.; Yu D. B.; Li Q. H.; Miao J. B.; Ge Q. Q.; Xu T. W. Advanced charged porous membranes with ultrahigh selectivity and permeability for acid recovery. J. Membr. Sci., 2017, 536, 11-18. doi:10.1016/j.memsci.2017.04.055http://dx.doi.org/10.1016/j.memsci.2017.04.055
Mondal A. N.; Cheng C. L.; Khan M. I.; Hossain M. M.; Emmanuel K.; Ge L.; Wu B.; He Y. B.; Ran J.; Ge X. L.; Afsar N. U.; Wu L.; Xu T. W. Improved acid recovery performance by novel poly(DMAEM-co-γ-MPS) anion exchange membrane via diffusion dialysis. J. Membr. Sci., 2017, 525, 163-174. doi:10.1016/j.memsci.2016.10.042http://dx.doi.org/10.1016/j.memsci.2016.10.042
Yu S. J.; Qian H.; Liao J. B.; Dong J.; Yu L.; Liu C. H.; Shen J. N. Proton blockage PVDF-co-HFP-based anion exchange membrane for sulfuric acid recovery in electrodialysis. J. Membr. Sci., 2022, 653, 120510. doi:10.1016/j.memsci.2022.120510http://dx.doi.org/10.1016/j.memsci.2022.120510
Ge L.; Wu B.; Li Q. H.; Wang Y. Q.; Yu D. B.; Wu L.; Pan J. F.; Miao J. B.; Xu T. W. Electrodialysis with nanofiltration membrane (EDNF) for high-efficiency cations fractionation. J. Membr. Sci., 2016, 498, 192-200. doi:10.1016/j.memsci.2015.10.001http://dx.doi.org/10.1016/j.memsci.2015.10.001
Yuzer B.; Aydin M. I.; Yildiz H.; Hasançebi B.; Selcuk H.; Kadmi Y. Optimal performance of electrodialysis process for the recovery of acid wastes in wastewater: practicing circular economy in aluminum finishing industry. Chem. Eng. J., 2022, 434, 134755. doi:10.1016/j.cej.2022.134755http://dx.doi.org/10.1016/j.cej.2022.134755
Guo R. Q.; Wang B. B.; Jia Y. X.; Wang M. Development of acid block anion exchange membrane by structure design and its possible application in waste acid recovery. Sep. Purif. Technol., 2017, 186, 188-196. doi:10.1016/j.seppur.2017.06.006http://dx.doi.org/10.1016/j.seppur.2017.06.006
Wang L.; Li Z. X.; Xu Z. Z.; Zhang F.; Efome J. E.; Li N. W. Proton blockage membrane with tertiary amine groups for concentration of sulfonic acid in electrodialysis. J. Membr. Sci., 2018, 555, 78-87. doi:10.1016/j.memsci.2018.03.011http://dx.doi.org/10.1016/j.memsci.2018.03.011
Li J.; Zhou M. L.; Lin J. Y.; Ye W. Y.; Xu Y. Q.; Shen J. N.; Gao C. J.; van der Bruggen B. Mono-valent cation selective membranes for electrodialysis by introducing polyquaternium-7 in a commercial cation exchange membrane. J. Membr. Sci., 2015, 486, 89-96. doi:10.1016/j.memsci.2014.12.056http://dx.doi.org/10.1016/j.memsci.2014.12.056
Gan R. J.; Ma Y. J.; Li S. S.; Zhang F. X.; He G. H. Facile fabrication of amphoteric semi-interpenetrating network membranes for vanadium flow battery applications. J. Energy Chem., 2018, 27(4), 1189-1197. doi:10.1016/j.jechem.2017.09.017http://dx.doi.org/10.1016/j.jechem.2017.09.017
Yan X. M.; Zhang C. M.; Dong Z. W.; Jiang B. W.; Dai Y.; Wu X. M.; He G. H. Amphiprotic side-chain functionalization constructing highly proton/vanadium-selective transport channels for high-performance membranes in vanadium redox flow batteries. ACS Appl. Mater. Interfaces, 2018, 10(38), 32247-32255. doi:10.1021/acsami.8b11993http://dx.doi.org/10.1021/acsami.8b11993
Liu K.; Hu S.; Wei X. Q.; Zuo T. T.; Che Q. T. Accelerating proton conduction in proton exchange membranes with sandwich structure based on carbon nanotubes oxide. Process. Saf. Environ., 2023, 175, 280-289. doi:10.1016/j.psep.2023.05.048http://dx.doi.org/10.1016/j.psep.2023.05.048
Zheng Y. F.; Zhou Z. F.; Jiao M. Q.; Wang L.; Zhang J.; Wu W. J.; Wang J. T. Lamellar membrane with orderly aligned glycine molecules for efficient proton conduction. J. Membr. Sci., 2023, 672, 121433. doi:10.1016/j.memsci.2023.121433http://dx.doi.org/10.1016/j.memsci.2023.121433
Park J. Y.; Acar M. H.; Akthakul A.; Kuhlman W.; Mayes A. M. Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes. Biomaterials, 2006, 27(6), 856-865. doi:10.1016/j.biomaterials.2005.07.010http://dx.doi.org/10.1016/j.biomaterials.2005.07.010
Yang C.; Liu L.; Han X. J.; Huang Z. G.; Dong J. P.; Li N. W. Highly anion conductive, alkyl-chain-grafted copolymers as anion exchange membranes for operable alkaline H2/O2 fuel cells. J. Mater. Chem. A, 2017, 5(21), 10301-10310. doi:10.1039/c7ta00481hhttp://dx.doi.org/10.1039/c7ta00481h
Xu Z. Z.; Tang H. Y.; Li N. W. Enhanced proton/iron permselectivity of sulfonated poly(ether ether ketone) membrane functionalized with basic pendant groups during electrodialysis. J. Membr. Sci., 2020, 610, 118227. doi:10.1016/j.memsci.2020.118227http://dx.doi.org/10.1016/j.memsci.2020.118227
Wang L.; Liu M. H.; Zhao J. H.; Lei Y. L.; Li N. W. Comb-shaped sulfonated poly(ether ether ketone) as a cation exchange membrane for electrodialysis in acid recovery. J. Mater. Chem. A, 2018, 6(45), 22940-22950. doi:10.1039/c8ta08718khttp://dx.doi.org/10.1039/c8ta08718k
Zhang H. Q.; Yan X. M.; Gao L.; Hu L.; Ruan X. H.; Zheng W. J.; He G. H. Novel triple tertiary amine polymer-based hydrogen bond network inducing highly efficient proton-conducting channels of amphoteric membranes for high-performance vanadium redox flow battery. ACS Appl. Mater. Interfaces, 2019, 11(5), 5003-5014. doi:10.1021/acsami.8b18617http://dx.doi.org/10.1021/acsami.8b18617
Cao L.; Kong L.; Kong L. Q.; Zhang X. X.; Shi H. F. Novel sulfonated polyimide/zwitterionic polymer-functionalized graphene oxide hybrid membranes for vanadium redox flow battery. J. Power Sources, 2015, 299, 255-264. doi:10.1016/j.jpowsour.2015.09.026http://dx.doi.org/10.1016/j.jpowsour.2015.09.026
Eisenberg A. Clustering of ions in organic polymers. A theoretical approach. Macromolecules, 1970, 3(2), 147-154. doi:10.1021/ma60014a006http://dx.doi.org/10.1021/ma60014a006
Simons R. Water splitting in ion exchange membranes. Electrochim. Acta, 1985, 30(3), 275-282. doi:10.1016/0013-4686(85)80184-5http://dx.doi.org/10.1016/0013-4686(85)80184-5
Pismenskaya N. D.; Nikonenko V. V.; Melnik N. A.; Shevtsova K. A.; Belova E. I.; Pourcelly G.; Cot D.; Dammak L.; Larchet C. Evolution with time of hydrophobicity and microrelief of a cation-exchange membrane surface and its impact on overlimiting mass transfer. J. Phys. Chem. B, 2012, 116(7), 2145-2161. doi:10.1021/jp2101896http://dx.doi.org/10.1021/jp2101896
Wang W. G.; Liu R.; Tan M.; Sun H. X.; Niu Q. J.; Xu T. W.; Nikonenko V.; Zhang Y. Evaluation of the ideal selectivity and the performance of selectrodialysis by using TFC ion exchange membranes. J. Membr. Sci., 2019, 582, 236-245. doi:10.1016/j.memsci.2019.04.007http://dx.doi.org/10.1016/j.memsci.2019.04.007
Wu L.; Xu T. W.; Wu D.; Zheng X. Preparation and characterization of CPPO/BPPO blend membranes for potential application in alkaline direct methanol fuel cell. J. Membr. Sci., 2008, 310(1-2), 577-585. doi:10.1016/j.memsci.2007.11.039http://dx.doi.org/10.1016/j.memsci.2007.11.039
0
浏览量
26
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构