纸质出版日期:2023-12-20,
网络出版日期:2023-09-11,
收稿日期:2023-05-17,
录用日期:2023-06-21
扫 描 看 全 文
引用本文
阅读全文PDF
提出了一种基于溶液表面的聚苯胺(PANI)薄膜及气敏器件的室温制备方法,以苯胺单体、盐酸和过硫酸铵为原料通过氧化聚合在其水溶液表面直接获得质子化聚苯胺(PANI)薄膜,并利用薄膜的可转移特性构筑气敏器件. 研究发现溶液的pH对PANI致密薄膜的形成至关重要,从而提出了质子化苯胺单体优先在溶液表面聚集和聚合的PANI薄膜形成机制. 该薄膜气敏器件能够对NH3进行有效的室温检测,且性能随薄膜聚合温度和聚合时间的变化呈规律性变化,优选制备条件下(pH=0.6,室温18 ℃,聚合60 min)的薄膜其检测下限为10-6,响应与NH3浓度呈良好的线性关系,并具有良好的重复性、选择性、快速响应和有竞争力的响应值. 该薄膜制备工艺体现了“绿色”制备思想,且薄膜能够大面积制备并具有优异的气敏性能,有望为PANI-基薄膜的制备与室温气体传感器的研究与应用提供一种新的思路.
A room-temperature approach based on the solution surface for the fabrication of polyaniline (PANI) film and gas sensitive devices was introduced in this study. The protonated PANI film was directly produced on the surface of the aqueous solution through oxidation polymerization way, only using the aniline monomer, hydrochloric acid, and ammonium persulfate as raw materials. The gas sensitive device was subsequently built based on the transferable properties of the film. A mechanism for PANI film production was therefore proposed, according to which protonated aniline monomers preferentially aggregate and polymerize on the solution surface. It was discovered that the pH of HCl solution was crucial for the creation of the PANI dense film. The film gas-sensitive device was successful in detecting NH3 at room temperature, and the response varied regularly with the temperature and duration of film polymerization. The resulting film has a lower detection limit of 0.7 mg/m3, a good linear response to NH3 in the range of 0.7‒140.0 mg/m3, good repeatability, selectivity, rapid response, and competitive response value under optimal fabrication conditions (pH=0.6, room temperature 18 ℃, and plolymerization of 60 min). Obviously, the fabrication process is environmentally friendly, the film can be produced across a vast surface area, and it exhibits outstanding gas sensitivity performance, all of which are anticipated to provide a new route for the fabrication of PANI-based films as well as for the research and application of room-temperature gas sensors.
提出了基于溶液表面的聚苯胺(PANI)薄膜及气敏器件的室温制备方法,研究发现溶液的pH对薄膜的形成至关重要.气敏器件能够对NH3进行室温检测,其检测下限为0.7 mg/m3,响应与NH3浓度呈良好的线性关系,并具有良好的重复性和选择性.
聚苯胺(PANI)作为导电高分子材料,在气体传感器[
目前用于气体传感器的PANI导电薄膜的制备方法主要可归类为3种,即,涂覆法、原位沉积法和基于液面的聚合物法. 涂覆法是先制备PANI材料再通过一定的方式(如滴涂[
水溶液表面属于水-空气界面,具有比内部高的能量,容易诱导形核和材料生长,在金属、无机半导体合成方面已有体现[
所用试剂均为分析纯级,其中苯胺、过硫酸铵((NH4)2S2O8,简称APS)、盐酸、苯扎氯氨购自广州化学试剂厂;无水乙醇和氨水购自天津致远化学试剂厂. 试剂直接取用并将盐酸和APS分别配制成浓度为0.24和0.56 mol/L的水溶液.
PANI导电薄膜与气敏元件的典型制备工艺如
Fig. 1 Schematic illustration of the fabrication process of PANI film and sensor: (a) preparation of solution; (b) polymerization at solution surface; (c) washing; (d) transferring; (e) film-wrapped ceramic tube; (f) gas-sensing sensor.
采用场发射扫描电子显微镜(Carl Zeiss,ZEISS Ultra 55)对附着在陶瓷管上的PANI薄膜直接进行表面形貌观察和分析. 将薄膜样品打碎成粉末,通过红外光谱仪(Perkin Elmer, Spectrum Two)、X射线粉末衍射仪(Bruker,D8 Advance)、X射线光电子能谱仪(岛津,AXIS SUPRA)以及紫外可见光分光光度计(岛津,UV-2700)对其进行结构、物相、元素以及带隙等的分析.
利用炜盛WS-30A型气敏元件测试系统对PANI薄膜传感器进行性能测试. 测试时,将传感器一个18 L密闭箱体空间,工作电压为5 V,启动箱体内部风扇,在电脑端启动检测程序. 测试对NH3的气敏性能时,用微升注射器吸取一定量的氨水,通过箱体的小孔注入箱体内部的加热板上,启动加热电源使氨水完全蒸发形成NH3,利用电脑端程序实时监测传感器的电阻变化,待电阻达到稳定并维持一定的时间后,打开箱体释放NH3,电阻回复到测试前状态,完成一个测试. 控制氨水的加入量可实现对不同浓度的NH3的检测. 其他气体的测试也采用类似的方法. 传感器对气体的响应定义为:
S=RgasRair |
其中,S为响应,Rair和Rgas分别为传感器在空气中和引入待测气体后的电阻.
苯胺在HCl溶液中通过APS氧化聚合是PANI导电材料制备的一种常规方法[
溶液表面聚合成膜意味着溶液表面有类似衬底的作用,是薄膜生长的凭借,根据材料形核和生长的一般原理,这需要苯胺单体能够在溶液表面聚集以形成浓度优势从而使PANI在此处优先生长. 室温(18 ℃)实验发现,PANI在溶液表面成膜状况与溶液的pH密切相关,如图
Fig. 2 The effects of pH of HCl solution ((a)‒(e)), and a cationic surfactant (f) on the formation of PANI on the surface of the final solutions. The pH of HCl solutions employed in (a)‒(e) were 0.6, 1.3, 1.6, 1.9 and 6.5, respectively. The preparation of "f" was same as that of "a" but the addition of benzalammonium chloridethe. The amount of aniline and APS and the volume of HCl solutions were kept consistent, and all reaction time were controlled for 60 min.
通过以上现象的观察和分析,可以推测溶液表面PANI成膜机制如
Fig. 3 Formation mechanism of PANI film on solution surface. (a) Aniline protonation and its aggregation on the solution surface; (b) Aniline polymerization process at the surface; (c) PANI film on the surface.
将
Fig. 4 Characterization of PANI film. (a) SEM image; (b) FTIR spectrum; (c) XRD pattern; (d) UV-Vis absorption spectrum; (e) C1s XPS spectra; (f) N1s XPS spectra.
从X射线衍射(XRD)图(
y=0.125x+1.47 | (1) |
Fig. 5 Sensing performance and mechanism of the PANI film in detection of NH3. (a) Response to different concentration of NH3; (b) Linear correlations between response and NH3 concentration; (c) Response-recovery time; (d) Repeatability; (e) Selectivity; (f) Sensing mechanism.
模拟的相关系数(R2)为0.988,说明该线性关系合理,可为定量NH3提供依据.
PANI film | Fabrication method, temperature, time | NH3(mg/m3) | Response time (s) | Response |
---|---|---|---|---|
PANI-SDS[ | Solution/organic phase interface polymerization, 10 ℃, 24 h | 28.0 | 100 | 5.30 |
PANI-sodium oleyl sulfate[ | Solution/surfactant interface polymerization, 1 ℃, 48 h | 0.02 | 672 | 1.02 |
PANI Nanofibrous[ | Solution polymerization, then deposition, 0-5 ℃, >12 h | 70.0 | ~84 | 1.29 |
PANI-HCl[ | In situ dip-coating polymerization, 0-5 ℃, 3 h | 35.0 | ~90 | 1.12 |
PANI-carboxylic acid[ | Solution polymerization, then deposition, 0-5 ℃, 24 h | 35.0 | 27 | 4.12 |
PANI-CTAB[ | In situ dip-coating polymerization, 0 ℃, 22 h | 3.5 | 102 | 1.81 |
PANI-H2SO4[ | Solution polymerization, then spraying, 0-5 ℃, 12.5 h | 700.0 | 150 | 2.70 |
PANI-toluene sulfonic acid[ | Solution polymerization, then deposition, -5 ℃, 48 h | 70.0 | 120 | 2.30 |
PANI-HCl (this work) | Solution surface polymerization, room temperature (18 ℃), 1 h | 35.0 | 36 | 5.94 |
Fig. 6 Effect of polymerization temperature on PANI film. (a) SEM image of PANI film fabricated at 4 ℃; (b) SEM image of PANI film fabricated at 40 ℃; (c) Temperature changes during the polymerization process at different temperatures; (d) Response of PANI films obtained from different temperatures to 35.0 mg/m3 NH3.
进一步以室温18 ℃的聚合条件,研究了反应时间对薄膜气敏性能的影响,如
Fig. 7 (a) Response of PANI films with different polymerization time to 35.0 mg/m3 NH3; (b) Variation of response values with polymerization time.
综上,本文中提出的水溶液表面聚合方法,能够仅以苯胺单体、HCl和APS为原料室温下在溶液表面制备质子化的PANI导电薄膜,并可利用薄膜可自由转移的特性构筑NH3室温气体传感器. 薄膜的形成源于质子化苯胺单体因具有类似表面活性剂的性质而优先在溶液表面聚集和原位氧化聚合,其形态和气敏性能温度和聚合时间的影响,并呈规律性变化. 优选制备条件是HCl溶液控制为pH=0.6,常温(18 ℃)聚合60 min,所获薄膜具有平整、致密的形态特征,在NH3检测时体现了具有竞争性的气敏性能,包括高响应、快速响应、良好的浓度线性依赖性、良好的重复性和优异的选择性. 该制备方法操作简便,成本与能耗低,环境友好,能够大面积制备性能一致的薄膜,具有潜在的实用价值,有望促进高性能PANI膜、PANI-基复合薄膜以及相应气敏器件的研究与应用.
Hu Q.; Wang Z. M.; Chang J. Y.; Wan P.; Huang J. H.; Feng L. Design and preparation of hollow NiO sphere-polyaniline composite for NH3 gas sensing at room temperature. Sens. Actuat. B, 2021, 344, 130179. doi:10.1016/j.snb.2021.130179 [百度学术]
Gamal A.; Shaban M.; BinSabt M.; Moussa M.; Ahmed A. M.; Rabia M.; Hamdy H. Facile fabrication of polyaniline/pbs nanocomposite for high-performance supercapacitor application. Nanomaterials, 2022, 12(5), 817. doi:10.3390/nano12050817 [百度学术]
He B. L.; Tang Q. W.; Wang M.; Chen H. Y.; Yuan S. S. Robust polyaniline-graphene complex counter electrodes for efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces, 2014, 6(11), 8230-8236. doi:10.1021/am500981w [百度学术]
Wang C.; Wang L.; Jin J.; Liu J.; Li Y.; Wu M.; Chen L. H.; Wang B. J.; Yang X. Y.; Su B. L. Probing effective photocorrosion inhibition and highly improved photocatalytic hydrogen production on monodisperse PANI@CdS core-shell nanospheres. Appl. Catal. B, 2016, 188, 351-359. doi:10.1016/j.apcatb.2016.02.017 [百度学术]
Zhou H. W.; Xue C. G.; Weis P.; Suzuki Y.; Huang S. L.; Koynov K.; Auernhammer G. K.; Berger R.; Butt H. J.; Wu S. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nat. Chem., 2017, 9(2), 145-151. doi:10.1038/nchem.2625 [百度学术]
Alharthy R. D.; Saleh A. A novel trace-level ammonia gas sensing based on flexible PANI-CoFe2O4 nanocomposite film at room temperature. Polymers, 2021, 13(18), 3077. doi:10.3390/polym13183077 [百度学术]
Wang L. L.; Huang H.; Xiao S. H.; Cai D. P.; Liu Y. A.; Liu B.; Wang D. D.; Wang C. X.; Li H.; Wang Y. R.; Li Q. H.; Wang T. H. Enhanced sensitivity and stability of room-temperature NH3 sensors using core-shell CeO2 nanoparticles@cross-linked PANI with p-n heterojunctions. ACS Appl. Mater. Interfaces, 2014, 6(16), 14131-14140. doi:10.1021/am503286h [百度学术]
Li X.; Xu J. L.; Jiang Y. D.; He Z. Z.; Liu B. H.; Xie H. K.; Li H.; Li Z. M.; Wang Y.; Tai H. L. Toward agricultural ammonia volatilization monitoring: a flexible polyaniline/Ti3C2Tx hybrid sensitive films based gas sensor. Sens. Actuat. B, 2020, 316, 128144. doi:10.1016/j.snb.2020.128144 [百度学术]
Liu G. Q.; Zhou Y.; Zhu X. Y.; Wang Y. J.; Ren H.; Wang Y. H.; Gao C.; Guo Y. C. Humidity enhanced ammonia sensing of porous polyaniline/tungsten disulfide nanocomposite film. Sens. Actuat. B, 2020, 323, 128699. doi:10.1016/j.snb.2020.128699 [百度学术]
Chia M. R.; Ahmad I.; Phang S. W. Starch/polyaniline biopolymer film as potential intelligent food packaging with colourimetric ammonia sensor. Polymers, 2022, 14(6), 1122. doi:10.3390/polym14061122 [百度学术]
Wu G. D.; Du H. S.; Lee D.; Cha Y. L.; Kim W.; Zhang X. Y.; Kim D. J. Polyaniline/graphene-functionalized flexible waste mask sensors for ammonia and volatile sulfur compound monitoring. ACS Appl. Mater. Interfaces, 2022, 14(50), 56056-56064. doi:10.1021/acsami.2c15443 [百度学术]
Pauly A.; Saad Ali S.; Varenne C.; Brunet J.; Llobet E.; Ndiaye A. L. Phthalocyanines and porphyrins/polyaniline composites (PANI/CuPctBu and PANI/TPPH2) as sensing materials for ammonia detection. Polymers, 2022, 14(5), 891. doi:10.3390/polym14050891 [百度学术]
Belkhamssa N.; Ksibi M.; Shih A.; Izquierdo R. Fabrication of fast responsive and insensitive-humidity sensor based on polyaniline-WO3-CuCl2 for hydrogen sulfide detection. IEEE Sens. J., 2021, 21(8), 9716-9722. doi:10.1109/jsen.2020.3019240 [百度学术]
Medi B.; Bahramian A.; Nazari V. Synthesis and characterization of conducting polyaniline nanostructured thin films for solar cell applications. JOM, 2021, 73(2), 504-514. doi:10.1007/s11837-020-04361-8 [百度学术]
Harale N. S.; Nagare A. B.; Mali S. S.; Suryawanshi M. P.; Sharma K. K. K.; Rao V. K.; Hong C. K.; Kim J. H.; Patil P. S. Facile synthesis of nanofibrous polyaniline thin films for ammonia gas detection. J. Electron. Mater., 2020, 49(2), 1338-1347. doi:10.1007/s11664-019-07778-3 [百度学术]
Khalifa M.; Anandhan S. Highly sensitive and wearable NO2 gas sensor based on PVDF nanofabric containing embedded polyaniline/g-C3N4 nanosheet composites. Nanotechnology, 2021, 32, 485504. [百度学术]
Yang P. Y.; Lv D. W.; Shen W. F.; Wu T. Y.; Yang Y.; Zhao Y.; Tan R. Q.; Song W. J. Porous flexible polyaniline/polyvinylidene fluoride composite film for trace-level NH3 detection at room temperature. Mater. Lett., 2020, 271, 127798. doi:10.1016/j.matlet.2020.127798 [百度学术]
Wu T. Y.; Lv D. W.; Shen W. F.; Song W. J.; Tan R. Q. Trace-level ammonia detection at room temperature based on porous flexible polyaniline/polyvinylidene fluoride sensing film with carbon nanotube additives. Sens. Actuat. B, 2020, 316, 128198. doi:10.1016/j.snb.2020.128198 [百度学术]
Tohidi T.; Tohidi S.; Mohammad-Rezaei R. Fabrication of flexible polyaniline@ZnO hollow sphere hybrid films for high-performance NH3 sensors. J. Mater. Sci., 2020, 31(21), 19119-19129. doi:10.1007/s10854-020-04448-7 [百度学术]
Sharma A.; Rawal I.; Rajpal A.; Khokhar A.; Kumar V.; Goyal P. K. Highly sensitive and selective room temperature ammonia sensor based on polyaniline thin film: in situ dip-coating polymerization. J. Mater. Sci., 2022, 33(17), 14071-14085. doi:10.1007/s10854-022-08338-y [百度学术]
Liu A.; Wang C. L.; Yang X. L.; Liu F. M.; Li S. Q.; Wang J.; You R.; Yang Z. J.; He J. M.; Jiang L.; Yan X.; Sun P.; Lu G. Y. Polyaniline @ porous nanosphere SnO2/Zn2SnO4 nanohybrid for selective room temperature flexible NH3 sensor. Sens. Actuat. B, 2020, 317, 128218. doi:10.1016/j.snb.2020.128218 [百度学术]
Lisboa F.; Neiva E.; Bergamini M.; Marcolino L. Jr, Zarbin, A. Evaluation of carbon nanotubes/polyaniline thin films for development of electrochemical sensors. J. Braz. Chem. Soc., 2020, 31(6), 1093-1100. [百度学术]
Mirmohseni A.; Azizi M.; Dorraji M. S. S. Cationic graphene oxide nanosheets intercalated with polyaniline nanofibers: a promising candidate for simultaneous anticorrosion, antistatic, and antibacterial applications. Prog. Org. Coat., 2020, 139, 105419. doi:10.1016/j.porgcoat.2019.105419 [百度学术]
Salvatierra R. V.; Cava C. E.; Roman L. S.; Zarbin A. J. G. ITO-free and flexible organic photovoltaic device based on high transparent and conductive polyaniline/carbon nanotube thin films. Adv. Funct. Mater., 2013, 23(12), 1490-1499. doi:10.1002/adfm.201201878 [百度学术]
Zhu C. H.; Xu Y. F.; Zhou T. T.; Liu L. C.; Chen Q. D.; Gao B. R.; Zhang T. Self-assembly polyaniline films for the high-performance ammonia gas sensor. Sens. Actuat. B, 2022, 365, 131928. doi:10.1016/j.snb.2022.131928 [百度学术]
Xu S. P.; Sun F. Q.; Pan Z. Z.; Huang C. W.; Yang S. M.; Long J. F.; Chen Y. Reduced graphene oxide-based ordered macroporous films on a curved surface: general fabrication and application in gas sensors. ACS Appl. Mater. Interfaces, 2016, 8(5), 3428-3437. doi:10.1021/acsami.5b11607 [百度学术]
Xu S. P.; Sun F. Q.; Gu F. L.; Zuo Y. B.; Zhang L. H.; Fan C. F.; Yang S. M.; Li W. S. Photochemistry-based method for the fabrication of SnO2 monolayer ordered porous films with size-tunable surface pores for direct application in resistive-type gas sensor. ACS Appl. Mater. Interfaces, 2014, 6(2), 1251-1257. doi:10.1021/am4050844 [百度学术]
Sun F.; Cai W.; Li Y.; Jia L.; Lu F. Direct growth of mono- and multilayer nanostructured porous films on curved surfaces and their application as gas sensors. Adv. Mater., 2005, 17(23), 2872-2877. doi:10.1002/adma.200500936 [百度学术]
Beygisangchin M.; Abdul Rashid S.; Shafie S.; Sadrolhosseini A. R.; Lim H. N. Preparations, properties, and applications of polyaniline and polyaniline thin films—a review. Polymers, 2021, 13(12), 2003. doi:10.3390/polym13122003 [百度学术]
Jangid N. K.; Jadoun S.; Kaur N. A review on high-throughput synthesis, deposition of thin films and properties of polyaniline. Eur. Polym. J., 2020, 125(15), 109485. doi:10.1016/j.eurpolymj.2020.109485 [百度学术]
Zhang T.; Qi H. Y.; Liao Z. Q.; Horev Y. D.; Panes-Ruiz L. A.; St Petkov P.; Zhang Z.; Shivhare R.; Zhang P. P.; Liu K. J.; Bezugly V.; Liu S. H.; Zheng Z. K.; Mannsfeld S.; Heine T.; Cuniberti G.; Haick H.; Zschech E.; Kaiser U.; Dong R. H.; Feng X. L. Engineering crystalline quasi-two-dimensional polyaniline thin film with enhanced electrical and chemiresistive sensing performances. Nat. Commun., 2019, 10, 4225. doi:10.1038/s41467-019-11921-3 [百度学术]
Seki T.; Yu X. Q.; Zhang P.; Yu C. C.; Liu K. J.; Gunkel L.; Dong R. H.; Nagata Y.; Feng X. L.; Bonn M. Real-time study of on-water chemistry: Surfactant monolayer-assisted growth of a crystalline quasi-2D polymer. Chem, 2021, 7(10), 2758-2770. doi:10.1016/j.chempr.2021.07.016 [百度学术]
Ince A.; Bayramoglu G.; Karagoz B.; Altintas B.; Bicak N.; Arica M. Y. A method for fabrication of polyaniline coated polymer microspheres and its application for cellulase immobilization. Chem. Eng. J., 2012, 189-190, 404-412. doi:10.1016/j.cej.2012.02.048 [百度学术]
Lakhdari D.; Guittoum A.; Benbrahim N.; Belgherbi O.; Berkani M.; Seid L.; Khtar S. A.; Saeed M. A.; Lakhdari N. Elaboration and characterization of Ni (NPs)-PANI hybrid material by electrodeposition for non-enzymatic glucose sensing. J. Electron. Mater., 2021, 50(9), 5250-5258. doi:10.1007/s11664-021-09031-2 [百度学术]
Gautam S. K.; Panda S. Effect of moisture and molecular weight of polyaniline on H2S sensing characteristics. Sens. Actuat. B, 2021, 344, 130323. doi:10.1016/j.snb.2021.130323 [百度学术]
鞠洪岩, 付大光, 詹磊, 李季, 王献红, 王佛松. 湿度对聚苯胺氨气传感器性能影响的研究. 高分子学报, 2014, (1), 156-163. doi:10.3724/SP.J.1105.2014.13378 [百度学术]
Khanapure R. G.; Ghanwat A. A.; Awate S. K.; Uttam S. G.; Kavade R. J.; Salunkhe P. H.; Patil S. V. Room-temperature ammonia gas sensor based on carboxylic acid-doped polyaniline. Polym. Bull., 2023, 80(3), 3183-3195. doi:10.1007/s00289-022-04215-0 [百度学术]
Zhao J. L.; Shen W. F.; Lv D. W.; Zhang J.; Wang Y. H.; Liang T. X.; Song W. J. Flexible room temperature sensor with modulation of polyaniline interfacial polymerization by CTAB for ppb-level ammonia detection. Mater. Lett., 2023, 333, 133690. doi:10.1016/j.matlet.2022.133690 [百度学术]
Li B.; Li Y.; Ma P. H. Synthesis of H2SO4-doped polyaniline materials and behavior of enhancing gas sensing properties. J. Mater. Sci., 2022, 33(23), 18673-18685. doi:10.1007/s10854-022-08716-6 [百度学术]
Sengupta P. P.; Kar P.; Adhikari B. Influence of dopant in the synthesis, characteristics and ammonia sensing behavior of processable polyaniline. Thin Solid Films, 2009, 517(13), 3770-3775. doi:10.1016/j.tsf.2008.12.049 [百度学术]
613
浏览量
883
下载量
1
CSCD
相关文章
相关作者
相关机构