浏览全部资源
扫码关注微信
特种功能高分子材料及相关技术教育部重点实验室 华东理工大学材料科学与工程学院 上海 200237
E-mail: huyhxy@ecust.edu.cn
纸质出版日期:2023-12-20,
网络出版日期:2023-10-25,
收稿日期:2023-06-22,
录用日期:2023-08-10
扫 描 看 全 文
夏纪宇,姜宁,吴凝宇等.萘乙炔基封端的含硅聚酰亚胺的制备与性能[J].高分子学报,2023,54(12):1826-1835.
Xia Ji-yu,Jiang Ning,Wu Ning-yu,et al.Preparation, Processing and Thermal Properties of Naphthaleneethynyl-terminated Silica-containing Polyimides[J].Acta Polymerica Sinica,2023,54(12):1826-1835.
夏纪宇,姜宁,吴凝宇等.萘乙炔基封端的含硅聚酰亚胺的制备与性能[J].高分子学报,2023,54(12):1826-1835. DOI: 10.11777/j.issn1000-3304.2023.23142.
Xia Ji-yu,Jiang Ning,Wu Ning-yu,et al.Preparation, Processing and Thermal Properties of Naphthaleneethynyl-terminated Silica-containing Polyimides[J].Acta Polymerica Sinica,2023,54(12):1826-1835. DOI: 10.11777/j.issn1000-3304.2023.23142.
为了获得兼具良好热性能和加工性能的聚酰亚胺树脂,设计合成了不对称二胺(3-氨基-苯基)-(4'-氨基-苯基)-乙炔(AMPA),含萘环的封端剂3-(萘-1-乙炔基)苯胺(NAA)以及含硅二酐双(3
4-二羧基苯基)二甲基硅烷二酐. 为研究结构与性能的关系,引入4
4'-双邻苯二甲酸酐(ODPA)和间氨基苯乙炔(APA)为对照二酐和封端剂,制备了一系列分子链中含硅和内炔基团的聚酰亚胺树脂PI-Si-Ⅰ (以APA为封端剂)和PI-Si-Ⅱ (以NAA为封端剂),以及与之相对照的树脂PI-O-Ⅰ和PI-O-Ⅱ (二酐单体为ODPA). PI-Si树脂在常见溶剂如四氢呋喃中具有很好的溶解度,而PI-Si-Ⅱ树脂更是具有低的熔体黏度和100 ℃宽的加工窗口. 热失重的结果显示固化树脂具有良好的耐热性能,5 wt%热失重温度(
T
d5
)在547 ℃左右,质量残留率在79%左右;热裂解分析结果表明在聚酰亚胺主链中引入的硅和内炔基团在高温环境中形成硅氧硅结构和苯环等刚性结构,从而提高树脂的耐热性.
Silicone
alkyne and naphthalene groups are introduced into polyimides to obtain novel polyimides with good thermal and processing properties. Asymmetric diamine (3-aminophenyl)-(4'-aminophenyl)-acetylene (AMPA) and 3-(naphthalene-1-acetylene) aniline (NAA) naphthalene rings were synthesized by Sonogashira reaction. Then using AMPA
NAA
bis(3
4-dicarboxyphenyl) dimethylsilane di-anhydride
4
4'-diphthalic anhydride (ODPA) and m-aminobenzene (APA) as raw materials
a series of polyimide resins PI-Si-Ⅰ (APA as the terminating agent) and PI-Si-Ⅱ (NAA as the terminating agent) containing silicon and endoalkynyl groups in molecular chains were prepared with control group PI-O-Ⅰ and PI-O-Ⅱ (ODPA as the monomer of dianhydride). The PI-Si resins had high solubility in common solvents such as tetrahydrofuran (THF)
low melt viscosity and wide processing window of Pi-Si-Ⅱ resin. The processing window of resin was 100 ℃. The curing thermal behaviors of the resins were tracked by differential scanning calorimetry (DSC). The results showed that each resin had two curing peaks
the first peak appeared in the range of 285‒328 ℃ with the peak temperature at 311 ℃
and the second peak appeared in the range of 350‒422 ℃ with its second peak temperature at 390 ℃. The thermogravimetric test showed that the
T
d5
of cured resin was 547 ℃
and the
R
800℃
exceeded 79%
suggesting their excellent heat resistance. The thermal cracking analysis of the cured resins showed that the silico-oxy-silicon structure
benzene ring and naphthalene ring rigid structures were formed when silicomethyl and acetylene groups were introduced into the main polyimide chain at high temperature
which improved the heat resistance of the resin.
聚酰亚胺加工性能热性能萘环硅
PolyimideProcessabilityThermal propertiesNaphthalenic unitSilicon
Choi M. C.; Hwang J. C.; Kim C.; Ando S.; Ha C. S. New colorless substrates based on polynorbornene-chlorinated polyimide copolymers and their application for flexible displays. J. Polym. Sci. Poly. Chem., 2010, 48(8), 1806-1814. doi:10.1002/pola.23949http://dx.doi.org/10.1002/pola.23949
Gouzman I.; Grossman E.; Verker R.; Atar N.; Bolker A.; Eliaz N. Advances in polyimide-based materials for space applications. Adv. Mater., 2019, 31(18), 1807738. doi:10.1002/adma.201807738http://dx.doi.org/10.1002/adma.201807738
Gumyusenge A.; Luo X. Y.; Ke Z. F.; Tran D. T.; Mei J. G. Polyimide-based high-temperature plastic electronics. ACS Mater. Lett., 2019, 1(1), 154-157. doi:10.1021/acsmaterialslett.9b00120http://dx.doi.org/10.1021/acsmaterialslett.9b00120
Li Q.; Guo Y. J.; Ouyang C. L.; Yi S. M.; Liu S. Porous highly fluorinated polyimide/polydopamine nanocomposite films with simultaneously enhanced toughness, UV-shielding and photostability for aerospace applications. Polym. Test., 2023, 118, 107899. doi:10.1016/j.polymertesting.2022.107899http://dx.doi.org/10.1016/j.polymertesting.2022.107899
Liaw D. J.; Wang K. L.; Huang Y. C.; Lee K. R.; Lai J. Y.; Ha C. S. Advanced polyimide materials: syntheses, physical properties and applications. Prog. Polym. Sci., 2012, 37(7), 907-974. doi:10.1016/j.progpolymsci.2012.02.005http://dx.doi.org/10.1016/j.progpolymsci.2012.02.005
Liu X. J.; Zheng M. S.; Chen G.; Dang Z. M.; Zha J. W. High-temperature polyimide dielectric materials for energy storage: theory, design, preparation and properties. Energy Environ. Sci., 2022, 15(1), 56-81. doi:10.1039/d1ee03186dhttp://dx.doi.org/10.1039/d1ee03186d
Wu Z. Q.; Dong J.; Teng C. Q.; Li X. T.; Zhao X.; Qin X. Z.; Ji C. C.; Zhang Q. H. Polyimide-based composites reinforced by carbon nanotube-grafted carbon fiber for improved thermal conductivity and mechanical property. Compos. Commun., 2023, 39, 101543. doi:10.1016/j.coco.2023.101543http://dx.doi.org/10.1016/j.coco.2023.101543
刘志真, 李宏运, 邢军, 益小苏, 杨慧丽, 王震. RTM聚酰亚胺复合材料力学性能研究. 材料工程. 2007, (S1), 98-101. doi:10.3969/j.issn.1001-4381.2007.z1.024http://dx.doi.org/10.3969/j.issn.1001-4381.2007.z1.024
Zhai L.; Yang S. Y.; Fan L. Preparation and characterization of highly transparent and colorless semi-aromatic polyimide films derived from alicyclic dianhydride and aromatic diamines. Polymer, 2012, 53(16), 3529-3539. doi:10.1016/j.polymer.2012.05.047http://dx.doi.org/10.1016/j.polymer.2012.05.047
Rafiee Z.; Rasekh M. Preparation and characterization of polyimides containing triaryl imidazole side groups. Polym. Adv. Technol., 2017, 28(4), 533-540. doi:10.1002/pat.3952http://dx.doi.org/10.1002/pat.3952
Liu Y.; Guo J. Y.; Wang J. Y.; Zhu X. Y.; Qi D.; Li W. Z.; Shen K. Z. A novel family of optically transparent fluorinated hyperbranched polyimides with long linear backbones and bulky substituents. Eur. Polym. J., 2020, 125, 109526. doi:10.1016/j.eurpolymj.2020.109526http://dx.doi.org/10.1016/j.eurpolymj.2020.109526
Liu Y.; Fan L.; Xu X. Z.; Mo S.; Peng D.; Mu Q. H.; Zhu C. Z.; Li C. H.; Xu J. Melt fluidity and thermal property of thermosetting siloxane-containing polyimide resins and their organic/inorganic hybrid characteristics. Mater. Today Commun., 2020, 25, 101443. doi:10.1016/j.mtcomm.2020.101443http://dx.doi.org/10.1016/j.mtcomm.2020.101443
Morikawa A.; Karube C.; Sakaki Y. Synthesis and properties of polyimides containing tetraphenylnaphthalene units. High Perform. Polym., 2016, 28(10), 1201-1209. doi:10.1177/0954008315622246http://dx.doi.org/10.1177/0954008315622246
杨士勇. 先进聚酰亚胺材料: 合成、表征及应用. 北京: 化学工业出版社, 2020. 20-24.
张宋奇, 朱峻立, 王立权, 林嘉平. 基于材料基因工程设计筛选耐高温易加工聚酰亚胺. 高分子材料科学与工程, 2021, 37(1), 51-58.
Shen J. X.; Lin X. S.; Liu J.; Li X. E. Effects of cross-link density and distribution on static and dynamic properties of chemically cross-linked polymers. Macromolecules, 2019, 52(1), 121-134. doi:10.1021/acs.macromol.8b01389http://dx.doi.org/10.1021/acs.macromol.8b01389
Luo J. R.; Liu Y. D.; Liu H.; Chen W. P.; Cui T. T.; Xiao L. G.; Min Y. G. Synthesis and characterization of polyimides with naphthalene ring structure introduced in the main chain. Materials, 2022, 15(22), 8014. doi:10.3390/ma15228014http://dx.doi.org/10.3390/ma15228014
Tagle L. H.; Terraza C. A.; Tundidor-Camba A.; Ortiz P. A. Poly(esters) containing two silicon atoms and aminoacidic residues in the main chain: synthesis, characterization and thermal studies. J. Inorg. Organomet. Polym. Mater., 2016, 26(5), 991-1004. doi:10.1007/s10904-016-0408-5http://dx.doi.org/10.1007/s10904-016-0408-5
He J. J.; Yang K.; Zhao J. H.; Cao S. LiHMDS-promoted palladium-catalyzed sonogashira cross-coupling of aryl fluorides with terminal alkynes. Org. Lett., 2019, 21(23), 9714-9718. doi:10.1021/acs.orglett.9b03815http://dx.doi.org/10.1021/acs.orglett.9b03815
何曼君, 张红东, 陈维孝. 高分子物理, 第3版. 上海: 复旦大学出版社, 2007.
李斌太, 邢丽英, 赵彤, 刘锋, 陈祥宝. 乙炔封端聚异酰亚胺树脂固化特性研究. 航空材料学报, 2011, 31(2), 37-42. doi:10.3969/j.issn.1005-5053.2011.2.008http://dx.doi.org/10.3969/j.issn.1005-5053.2011.2.008
Liu Y.; Mo S.; He M. H.; Zhai L.; Xu C. H.; Fan L. Phenylethynyl-terminated oligoimides based on bis(p-aminophenoxy)dimethyl silane: effect of siloxane structure on processability and thermal stability. High Perform. Polym., 2019, 31(6), 651-661. doi:10.1177/0954008318780211http://dx.doi.org/10.1177/0954008318780211
Han G.; Hou J. S.; Wan L.; Hao X. F.; Liu X. T.; Lv S. K.; Gao M.; Tang J. K.; Huang F. R. Enhance high-temperature mechanical performance of a silicon-containing arylether arylacetylene resin with the aid of a terminal alkyne compound. J. Polym. Res., 2021, 28(11), 1-10. doi:10.1007/s10965-021-02775-9http://dx.doi.org/10.1007/s10965-021-02775-9
Muc A.; Romanowicz P.; Chwał M. Description of the resin curing process-formulation and optimization. Polymers, 2019, 11(1), 127. doi:10.3390/polym11010127http://dx.doi.org/10.3390/polym11010127
Chen Z. W.; Wang L. Q.; Lin J. P.; Du L. Thermal curing mechanism of acetylene-terminated polyimides: a combination of density functional theory computation and microkinetic analysis. Polymer, 2021, 218, 123529. doi:10.1016/j.polymer.2021.123529http://dx.doi.org/10.1016/j.polymer.2021.123529
Zhang X. W.; Zhang B.; Liu C. Z.; Sun M. M.; Zhang X. G.; Li J. H.; Xue G. Effect on the thermal resistance and thermal decomposition properties of thermally cross-linkable polyimide films obtained from a reactive acetylene. React. Funct. Polym., 2021, 167, 104994. doi:10.1016/j.reactfunctpolym.2021.104994http://dx.doi.org/10.1016/j.reactfunctpolym.2021.104994
0
浏览量
25
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构