浏览全部资源
扫码关注微信
1.暨南大学环境与气候研究院 广州 511443
2.华南理工大学轻工科学与工程学院 造纸与污染控制国家工程研究中心 制浆造纸国家重点实验室 广州 510640
3.Ira A. Fulton Schools of Engineering, Arizona State University Phoenix 85281
E-mail: yangjin@scut.edu.cn
纸质出版日期:2023-12-20,
网络出版日期:2023-10-24,
收稿日期:2023-06-02,
录用日期:2023-08-14
扫 描 看 全 文
彭勃,杨进,杨程皓.疏水SiO2粒子的设计、制备及改性环氧树脂的研究[J].高分子学报,2023,54(12):1844-1856.
Peng Bo,Yang Jin,Yang Cheng-hao.Design and Preparation of Hydrophobic Silica Particles and Study on Modified Epoxy Resin[J].Acta Polymerica Sinica,2023,54(12):1844-1856.
彭勃,杨进,杨程皓.疏水SiO2粒子的设计、制备及改性环氧树脂的研究[J].高分子学报,2023,54(12):1844-1856. DOI: 10.11777/j.issn1000-3304.2023.23151.
Peng Bo,Yang Jin,Yang Cheng-hao.Design and Preparation of Hydrophobic Silica Particles and Study on Modified Epoxy Resin[J].Acta Polymerica Sinica,2023,54(12):1844-1856. DOI: 10.11777/j.issn1000-3304.2023.23151.
为了制备具有稳定超疏水性能的水性环氧树脂,以3-氨丙基三乙氧基硅烷(KH550)、
γ
-缩水甘油醚氧丙基三甲氧基硅烷(KH560)的碱性水解反应为基础,制备不同粒径(微米、亚微米、纳米)的改性二氧化硅,通过层层组装的接枝反应制备出具有多尺度效应的草莓状SiO
2
多重粒子. 同时,作为对比,制备表面光滑的单包覆层的疏水SiO
2
. 通过红外光谱(FTIR)、核磁共振氢谱(NMR)、高分辨质谱(HRMS)等测试手段表征其结构,解析两类粒子的微观形貌和表面性能的异同. 将自制改性粒子与水性环氧树脂WEP共混,在涂层表面构建粗糙的微纳结构,制备具有超疏水性能的水性环氧树脂涂料. 采用示差扫描量热分析(DSC)和热重分析(TGA)表征涂料的共混性能及耐热性能;采用扫描电镜(SEM)和原子力测试(AFM)量化分析涂层特征及其表面形貌;采用接触角测试(WCA)表征水性涂层的超疏水性能及其表面能的变化规律. 结果显示,相对于单层包覆的光滑粒子,多层次结构的改性SiO
2
粒子迁移到环氧树脂表面,构建的微纳结构更有利于超疏水性能的形成,涂层具有明显的自清洁效应,而形成的粗糙涂层表面在苛刻环境中保持了结构的稳定性和持久性,体现出优异的耐磨和耐化学腐蚀性能.
To prepare a water-based epoxy resin with stable superhydrophobicity
we need to prepare the silica with different particle sizes (micron
submicron
nanometer) based on the alkaline hydrolysis reaction of 3-aminopropyltriethoxysilane (KH550)
γ
-glycidyloxypropyltrimethoxysilane (KH560) and methyltrimethoxysilane (MTMS). Strawberry-like SiO
2
(CM-SiO
2
) multiple particles with multi-scale effect were then synthesized through the grafting reaction of layer-by-layer assembly. At the same time
as a comparison
the single-coated hydrophobic SiO
2
with a smooth surface was prepared. The morphology and structure of the two types of particles were characterized by Fourier transform infrared spectroscopy (FTIR)
nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS)
while the similarities and differences can also be compared. The self-made modified particles were blended with water-based epoxy resin (WEP) to construct a rough micro-nano structure on the surface of the coating to prepare a water-based epoxy resin coating with superhydrophobic properties. Differential scanning calorimetry (DSC) and thermo gravimetric analyzer (TGA) were applied to characterize the blending performance and heat resistance of coatings. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to quantitatively analyze the characteristics of the coating and its surface morphology. The superhydrophobic properties of the waterborne coatings and the variation of surface energy were characterized by the contact angle test (WCA). The results show that compared with the smooth particles coated with a single layer
the modified SiO
2
particles with multi-layer structure migrated to the surface of WEP and constructed the micro-nano structure
which is more conducive to the formation of superhydrophobicity. In addition
the rough coating has an excellent self-cleaning effect and can maintain the stability and durability of the structure in harsh environments
reflecting excellent abrasion resistance and chemical corrosion resistance.
粒子设计水性环氧树脂超疏水微纳结构自组装
Particles designWater-based epoxy resinSuperhydrophobicityMicro-nano structureSelf-assembly
Yan J.; Yang J.; Sun L. L.; Xu G. L.; Li Z. H. Preparation, structure and application of styrene-acrylic emulsion/modified ammonium polyphosphate in flame retardant air filter paper. J. Ind. Text., 2022, 51(4_suppl), 7223S-7238S. doi:10.1177/15280837211066629http://dx.doi.org/10.1177/15280837211066629
Yang H. Y.; Wang S. Y.; Wang X.; Chao W. X.; Wang N.; Ding X. L.; Liu F.; Yu Q. Q.; Yang T. H.; Yang Z. L.; Li J.; Wang C. Y.; Li G. L. Wood-based composite phase change materials with self-cleaning superhydrophobic surface for thermal energy storage. Appl. Energy, 2020, 261, 114481. doi:10.1016/j.apenergy.2019.114481http://dx.doi.org/10.1016/j.apenergy.2019.114481
Li X. A.; Liu H. A.; Zhang Y. B.; Liu Z. Z. Durable, self-cleaning and anti-fouling superhydrophobic coating based on double epoxy layer. Mater. Res. Express, 2022, 9(2), 026404. doi:10.1088/2053-1591/ac5074http://dx.doi.org/10.1088/2053-1591/ac5074
Wen H. Y.; Jia Y. L.; Xiang B.; Zhang W. H.; Luo S. K.; Liu T. A facile preparation of the superhydrophobic polydimethylsiloxane materials and its performances based on the supercritical fluid foaming. J. Appl. Polym. Sci., 2021, 138(34), 50858. doi:10.1002/app.50858http://dx.doi.org/10.1002/app.50858
Du C. W.; He X. Y.; Tian F.; Bai X. Q.; Yuan C. Q. Preparation of superhydrophobic steel surfaces with chemical stability and corrosion. Coatings, 2019, 9(6), 398. doi:10.3390/coatings9060398http://dx.doi.org/10.3390/coatings9060398
Liu J. J.; Yang L. H.; Chen Q.; Zhao Y. J.; Xiao P. One-step preparation of graphene oxide/silica nanoparticles superhydrophobic coating for enhanced anti-corrosion performance. Mater. Lett., 2022, 306, 130869. doi:10.1016/j.matlet.2021.130869http://dx.doi.org/10.1016/j.matlet.2021.130869
Yu X. F.; Liu X.; Shi X. T.; Zhang Z. B.; Wang H. T.; Feng L. B. SiO2 nanoparticle-based superhydrophobic spray and multi-functional surfaces by a facile and scalable method. Ceram. Int., 2019, 45(12), 15741-15744. doi:10.1016/j.ceramint.2019.05.014http://dx.doi.org/10.1016/j.ceramint.2019.05.014
Qi Y. L.; Yang Z. B.; Huang W. X.; Zhang J. Robust superhydrophobic surface for anti-icing and cooling performance: application of fluorine-modified TiO2 and fumed SiO2. Appl. Surf. Sci., 2021, 538, 148131. doi:10.1016/j.apsusc.2020.148131http://dx.doi.org/10.1016/j.apsusc.2020.148131
Liu X. L.; Gu Y. C.; Mi T. F.; Wang X. M.; Zhang X. Dip-coating approach to fabricate durable PDMS/STA/SiO2 superhydrophobic polyester fabrics. Coatings, 2021, 11(3), 326. doi:10.3390/coatings11030326http://dx.doi.org/10.3390/coatings11030326
Jiang S. J.; Zhou S. S.; Du B.; Luo R. B. Preparation of superhydrophobic paper with double-size silica particles modified by amino and epoxy groups. AIP Adv., 2021, 11, 025127. doi:10.1063/5.0040426http://dx.doi.org/10.1063/5.0040426
Nguyen H. H.; Tieu A. K.; Tran B. H.; Wan S. H.; Zhu H. T.; Pham S. T. Porosity-induced mechanically robust superhydrophobicity by the sintering and silanization of hydrophilic porous diatomaceous earth. J. Colloid Interface Sci., 2021, 589, 242-251. doi:10.1016/j.jcis.2020.12.101http://dx.doi.org/10.1016/j.jcis.2020.12.101
Qiu J. H.; Huang C.; Yang J.; Wang T.; Xu G. L. Preparation of modified ammonium polyphosphate blended aqueous boron phenolic resin and its application to insulating paper. J. Polym. Res., 2022, 29(11), 448. doi:10.1007/s10965-022-03291-0http://dx.doi.org/10.1007/s10965-022-03291-0
Gao H. T.; Jian Y. M.; Yan Y. Y. The effects of bio-inspired micro/nano scale structures on anti-icing properties. Soft Matter, 2021, 17(3), 447-466. doi:10.1039/d0sm01683ghttp://dx.doi.org/10.1039/d0sm01683g
Wang T.; Yang J.; Yan J.; Xu G. L.; Li Z. H. Preparation of modified ammonium polyphosphate and its application in flame retardant air filter paper. Polym. Bull., 2022, 79(5), 3085-3098. doi:10.1007/s00289-021-03661-6http://dx.doi.org/10.1007/s00289-021-03661-6
Sun L. L.; Yang J.; Yan J. The structure and properties of water-based silicone blended phenolic resin and its application in oil filter paper-based materials. Korean J. Chem. Eng., 2022, 39(8), 2201-2210. doi:10.1007/s11814-022-1073-8http://dx.doi.org/10.1007/s11814-022-1073-8
徐卜琴, 赵宗倩, 徐桂龙, 杨进, 梁云, 胡健. 超疏水超亲油玻璃纤维过滤膜的制备及其乳化水分离效率. 硅酸盐学报, 2018, 46(8), 1173-1177. doi:10.14062/j.issn.0454-5648.2018.08.19http://dx.doi.org/10.14062/j.issn.0454-5648.2018.08.19
0
浏览量
36
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构