浏览全部资源
扫码关注微信
华东理工大学材料科学与工程学院 上海 200237
E-mail: lq_wang@ecust.edu.cn
纸质出版日期:2023-12-20,
网络出版日期:2023-09-08,
收稿日期:2023-06-09,
录用日期:2023-07-08
扫 描 看 全 文
王文清,王立权.两端系留纳米粒子聚合物的分子动力学模拟[J].高分子学报,2023,54(12):1935-1942.
Wang Wen-qing,Wang Li-quan.Molecular Dynamics Simulation of Polymers Tethered with Nanoparticles at Two Ends[J].Acta Polymerica Sinica,2023,54(12):1935-1942.
王文清,王立权.两端系留纳米粒子聚合物的分子动力学模拟[J].高分子学报,2023,54(12):1935-1942. DOI: 10.11777/j.issn1000-3304.2023.23154.
Wang Wen-qing,Wang Li-quan.Molecular Dynamics Simulation of Polymers Tethered with Nanoparticles at Two Ends[J].Acta Polymerica Sinica,2023,54(12):1935-1942. DOI: 10.11777/j.issn1000-3304.2023.23154.
两端系留纳米粒子聚合物是研究末端对聚合物链弛豫行为影响的优选分子模型. 本文构建了两端系留纳米粒子聚合物模型,运用粗粒化分子动力学方法研究了两端系留纳米粒子聚合物的特征温度和弛豫行为,探讨了纳米粒子半径和聚合物链长对玻璃化转变温度、结晶温度和介电性能的影响. 研究表明,聚合物两端纳米粒子的存在可延缓聚合物链的弛豫并促进结晶,使两端系留纳米粒子聚合物的玻璃化转变温度和结晶温度均增加. 研究结果与相关的实验报道吻合,可加深对两端系留纳米粒子聚合物结构和性能的理解.
The polymer tethered with nanoparticles at two ends is a preferred molecular model for studying the effect of the chain end on the relaxation behavior of polymers. We constructed a polymer model with two nanoparticles tethered at each end and used coarse-grained molecular dynamics to study the characteristic temperature and relaxation behavior of these polymers. The effects of nanoparticle radius and polymer length on the glass transition temperature
crystallization temperature
and dielectric properties were examined. We found that two apparent transitions occur during the annealing. The high-temperature transition corresponds to the crystallization due to the existence of nanoparticles at ends
and the low-temperature transition is the glass transition related to polymer chains. The presence of nanoparticles at both ends of the polymer can delay the relaxation of the polymer chain and promote crystallization
resulting in an increase in the glass transition temperature and crystallization temperature of the polymer as the nanoparticle becomes large or the polymer chain shortens. The chain relaxation was further studied by calculating the relaxation correlation functions and dielectric relaxation spectra. The work revealed that the dielectric loss peak shifts towards low frequencies as the nanoparticle radius increases or the polymer chain length decreases. We finally compared the simulation results with existing experimental findings
and an agreement was achieved. The work can deepen the understanding of the structure and properties of the polymer with two nanoparticles tethered at each end.
弛豫玻璃化转变分子动力学聚合物接枝纳米粒子
RelaxationGlass transitionMolecular dynamicsPolymer-grafted nanoparticle
Ding Y. F.; Pawlus S.; Sokolov A. P.; Douglas J. F.; Karim A.; Soles C. L. Dielectric spectroscopy investigation of relaxation in C60-polyisoprene nanocomposites. Macromolecules, 2009, 42(8), 3201-3206. doi:10.1021/ma8024333http://dx.doi.org/10.1021/ma8024333
Mijović J.; Lee H.; Kenny J.; Mays J. Dynamics in polymer-silicate nanocomposites as studied by dielectric relaxation spectroscopy and dynamic mechanical spectroscopy. Macromolecules, 2006, 39(6), 2172-2182. doi:10.1021/ma051995ehttp://dx.doi.org/10.1021/ma051995e
Huwe A.; Kremer F.; Behrens P.; Schwieger W. Molecular dynamics in confining space: from the single molecule to the liquid state. Phys. Rev. Lett., 1999, 82(11), 2338-2341. doi:10.1103/physrevlett.82.2338http://dx.doi.org/10.1103/physrevlett.82.2338
Agarwal P.; Kim S. A.; Archer L. A. Crowded, confined, and frustrated: dynamics of molecules tethered to nanoparticles. Phys. Rev. Lett., 2012, 109(25), 258301. doi:10.1103/physrevlett.109.258301http://dx.doi.org/10.1103/physrevlett.109.258301
Agarwal P.; Srivastava S.; Archer L. A. Thermal jamming of a colloidal glass. Phys. Rev. Lett., 2011, 107(26), 268302. doi:10.1103/physrevlett.107.268302http://dx.doi.org/10.1103/physrevlett.107.268302
Medidhi K. R.; Padmanabhan V. Diffusion of polymer-grafted nanoparticles in a homopolymer matrix. J. Chem. Phys., 2019, 150(4), 044905. doi:10.1063/1.5084146http://dx.doi.org/10.1063/1.5084146
Kim S. A.; Mangal R.; Archer L. A. Relaxation dynamics of nanoparticle-tethered polymer chains. Macromolecules, 2015, 48(17), 6280-6293. doi:10.1021/acs.macromol.5b00791http://dx.doi.org/10.1021/acs.macromol.5b00791
Wen Y. H.; Schaefer J. L.; Archer L. A. Dynamics and rheology of soft colloidal glasses. ACS Macro Lett., 2015, 4(1), 119-123. doi:10.1021/mz5006662http://dx.doi.org/10.1021/mz5006662
Midya J.; Rubinstein M.; Kumar S. K.; Nikoubashman A. Structure of polymer-grafted nanoparticle melts. ACS Nano, 2020, 14(11), 15505-15516. doi:10.1021/acsnano.0c06134http://dx.doi.org/10.1021/acsnano.0c06134
Wang L. Q.; Ma J.; Hong W.; Zhang H. J.; Lin J. P. Nanoscale diffusion of polymer-grafted nanoparticles in entangled polymer melts. Macromolecules, 2020, 53(19), 8393-8399. doi:10.1021/acs.macromol.0c00721http://dx.doi.org/10.1021/acs.macromol.0c00721
Zhang X. L.; Wei W.; Xiong H. M. Hierarchical dynamics of nonsticky molecular nanoparticle-tethered polymers: end and topology effects. Macromolecules, 2022, 55(9), 3637-3649. doi:10.1021/acs.macromol.2c00232http://dx.doi.org/10.1021/acs.macromol.2c00232
Rubinstein M.; Colby, R. H. Polymer Physics. New York: Oxford University Press, 2003. 232-254. doi:10.1093/oso/9780198520597.001.0001http://dx.doi.org/10.1093/oso/9780198520597.001.0001
Fetters L. J.; Kiss A. D.; Pearson D. S.; Quack G. F.; Vitus F. J. Rheological behavior of star-shaped polymers. Macromolecules, 1993, 26(4), 647-654. doi:10.1021/ma00056a015http://dx.doi.org/10.1021/ma00056a015
Watanabe H.; Matsumiya Y.; Inoue T. Dielectric and viscoelastic relaxation of highly entangled star polyisoprene: quantitative test of tube dilation model. Macromolecules, 2002, 35(6), 2339-2357. doi:10.1021/ma011782zhttp://dx.doi.org/10.1021/ma011782z
Qiao X. Y.; Sawada T.; Matsumiya Y.; Watanabe H. Constraint release in moderately entangled monodisperse star polyisoprene systems. Macromolecules, 2006, 39(21), 7333-7341. doi:10.1021/ma0616155http://dx.doi.org/10.1021/ma0616155
van Ruymbeke E.; Bailly C.; Keunings R.; Vlassopoulos D. A general methodology to predict the linear rheology of branched polymers. Macromolecules, 2006, 39(18), 6248-6259. doi:10.1021/ma0604385http://dx.doi.org/10.1021/ma0604385
Kapnistos M.; Vlassopoulos D.; Roovers J.; Leal L. G. Linear rheology of architecturally complex macromolecules: comb polymers with linear backbones. Macromolecules, 2005, 38(18), 7852-7862. doi:10.1021/ma050644xhttp://dx.doi.org/10.1021/ma050644x
McLeish T. C. B.; Larson R. G. Molecular constitutive equations for a class of branched polymers: the pom-pom polymer. J. Rheol., 1998, 42(1), 81-110. doi:10.1122/1.550933http://dx.doi.org/10.1122/1.550933
van Ruymbeke E.; Kapnistos M.; Vlassopoulos D.; Huang T. Z.; Knauss D. M. Linear melt rheology of pom-pom polystyrenes with unentangled branches. Macromolecules, 2007, 40(5), 1713-1719. doi:10.1021/ma062487nhttp://dx.doi.org/10.1021/ma062487n
Zhang X. Z.; Lu Z. Y.; Qian H. J. A perspective on the dynamics properties in polymer nanocomposites. Chinese J. Polym. Sci., 2023, 41, 1355-1360. doi:10.1007/s10118-023-2956-9http://dx.doi.org/10.1007/s10118-023-2956-9
Young W. W.; Shi R.; Jia X. M.; Qian H. J.; Katsumata R. Relating the degree of nanofiller functionality to the glass transition temperature and structure in a polymer-polyhedral oligomeric silsesquioxane nanocomposite. Macromolecules, 2022, 55(12), 4891-4898. doi:10.1021/acs.macromol.2c00646http://dx.doi.org/10.1021/acs.macromol.2c00646
李宁宁, 王雷, 刘源, 梁好均. 高分子纳米复合材料拉伸及压缩的分子动力学模拟. 高分子学报, 2014, (9), 1292-1300. doi:10.11777/j.issn1000-3304.2014.14052http://dx.doi.org/10.11777/j.issn1000-3304.2014.14052
刘晓娜, 高梁, 王立权, 张承岩, 林嘉平. 纳米棒的类聚合组装行为研究. 高分子学报, 2018, (10), 1279-1286. doi:10.11777/j.issn1000-3304.2018.18082http://dx.doi.org/10.11777/j.issn1000-3304.2018.18082
Serghei A.; Kremer F.; Kob W. Chain conformation in thin polymer layers as revealed by simulations of ideal random walks. Eur. Phys. J. E, 2003, 12(1), 143-146. doi:10.1140/epje/i2003-10038-2http://dx.doi.org/10.1140/epje/i2003-10038-2
Serghei A.; Kremer F. Confinement-induced relaxation process in thin films of cis-polyisoprene. Phys. Rev. Lett., 2003, 91(16), 165702. doi:10.1103/physrevlett.91.165702http://dx.doi.org/10.1103/physrevlett.91.165702
Peter S.; Napolitano S.; Meyer H.; Wübbenhorst M.; Baschnagel J. Modeling dielectric relaxation in polymer glass simulations: dynamics in the bulk and in supported polymer films. Macromolecules, 2008, 41(20), 7729-7743. doi:10.1021/ma800694vhttp://dx.doi.org/10.1021/ma800694v
0
浏览量
24
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构