浏览全部资源
扫码关注微信
1.中国科学院化学研究所 极端环境高分子材料院重点实验室 北京 100190
2.航天材料及工艺研究所 北京 100076
3.浙江中科恒泰新材料科技有限公司 绍兴 312369
4.中国科学院大学化学科学学院 北京 100049
E-mail: aijunhu@iccas.ac.cn
shiyang@iccas.ac.cn
纸质出版日期:2023-12-20,
网络出版日期:2023-09-15,
收稿日期:2023-06-11,
录用日期:2023-07-24
扫 描 看 全 文
史亚伟,高坤,胡爱军等.聚甲基丙烯酰亚胺结构泡沫的极低温环境稳定性[J].高分子学报,2023,54(12):1817-1825.
Shi Ya-wei,Gao Kun,Hu Ai-jun,et al.The Property Stability of Polymethacrylimide Structural Foam at Extremely Low Temperatures[J].Acta Polymerica Sinica,2023,54(12):1817-1825.
史亚伟,高坤,胡爱军等.聚甲基丙烯酰亚胺结构泡沫的极低温环境稳定性[J].高分子学报,2023,54(12):1817-1825. DOI: 10.11777/j.issn1000-3304.2023.23156.
Shi Ya-wei,Gao Kun,Hu Ai-jun,et al.The Property Stability of Polymethacrylimide Structural Foam at Extremely Low Temperatures[J].Acta Polymerica Sinica,2023,54(12):1817-1825. DOI: 10.11777/j.issn1000-3304.2023.23156.
采用甲基丙烯腈(MAN)与甲基丙烯酸(MAA)作为共聚单体,通过自由基本体共聚合反应首先制备MAN-MAA共聚树脂板;然后,经加热发泡得到聚甲基丙烯酰亚胺(PMI)硬质闭孔结构泡沫. 研究发现,所制备PMI泡沫在室温下具有优良的力学性能、耐热性能及隔热性能;经液氢(LH
2
: -253 ℃)和液氧(LO
2
: -183 ℃)极低温环境处理1 h后,PMI泡沫仍表现出优良的化学结构及综合性能稳定性;在-150 ℃下,PMI泡沫的压缩强度和压缩模量高于室温(25 ℃),拉伸强度和断裂伸长率分别达到室温的70%和48%.
In view of the application demand for rigid structural foam in the extremely low-temperature environment in the aerospace field
polymethacrylimide (PMI) structural closed foams were prepared by thermal foaming of the copolymer sheet prepared by bulky radical copolymerization of methylacrylonitrile (MAN) and methacrylic acid (MAA). The reaction mechanism of PMI foam preparation process was analyzed. The thermal and mechanical properties of PMI foam as well as its structural and performance stability after being treated with liquid hydrogen (LH
2
: -253 ℃) and liquid oxygen (LO
2
: -183 ℃) were systematically studied. Experimental results indicated that the imide cyclization reaction was the main reaction in the foaming process
which occured above 160 ℃. The PMI foams obtained showed excellent mechanical
thermal and heat insulation properties at ambient temperature. The glass transition temperature of PMI foam was 202 ℃
and the initial thermal decomposition temperature was higher than 300 ℃. The compressive strength was 3.99 MPa with density of 111 kg/m
3
. After treated in liquid hydrogen and liquid oxygen at extremely low temperatures for 1 h
no obvious change was detected on the chemical structures and combined properties of the PMI foams. Otherwise
the PMI foam showed excellent mechanical properties at -150 ℃
with compressive strength and modulus which were higher than that measured at room temperature (25 ℃)
and tensile strength and elongation at break which were 70% and 48% of that at 25 ℃
respectively. The excellent high and low temperature resistance of PMI foam makes it expected to be used in the preparation of the structural parts of cryogenic propellant tank.
聚甲基丙烯酰亚胺泡沫液氢液氧燃料贮箱
Polymethacrylimide foamLiquid hydrogenLiquid oxygenPropellant tank
王凯, 贺强. 聚甲基丙烯酰亚胺泡沫夹层结构全生命周期的关键技术研究进展. 复合材料学报, 2020, 37(8), 1805-1822. doi:10.13801/j.cnki.fhclxb.20200512.002http://dx.doi.org/10.13801/j.cnki.fhclxb.20200512.002
Cheon S.; Yu S.; Kim K. Y.; Lim D. Y.; Lee J. C. Improvement of interfacial bonding force between PMI foam and CFRP in PMI foam-cored CFRP sandwich composites. Fibers Polym., 2021, 22(8), 2281-2284. doi:10.1007/s12221-021-0792-5http://dx.doi.org/10.1007/s12221-021-0792-5
胡培. 航空航天泡沫夹层结构的设计. 航空制造技术, 2012, 55(18), 99-104. doi:10.3969/j.issn.1671-833X.2012.18.021http://dx.doi.org/10.3969/j.issn.1671-833X.2012.18.021
邓飞飞, 肖光明, 成艳娜, 刘梦辉, 刘浩轩. 大尺寸、大厚度泡沫夹层舱门制造技术研究. 航空科学技术, 2022, 33(5), 18-23.
程文礼, 王燕, 于洪斌, 杜宇, 罗玉清, 陆志远, 张强. 民用飞机货舱地板夹层结构基本力学性能研究. 高科技纤维与应用, 2022, 47(3), 35-40. doi:10.3969/j.issn.1007-9815.2022.03.005http://dx.doi.org/10.3969/j.issn.1007-9815.2022.03.005
李涛, 陈蔚, 成理, 谭纪文, 靳玉田, 张国强. 泡沫夹层结构复合材料的应用与发展. 科技创新导报, 2009, 6(14), 3-5. doi:10.3969/j.issn.1674-098X.2009.14.002http://dx.doi.org/10.3969/j.issn.1674-098X.2009.14.002
赵锐霞, 尹亮, 潘玲英. PMI泡沫夹层结构在航天航空工业的应用. 宇航材料工艺, 2011, 41(2), 13-16. doi:10.3969/j.issn.1007-2330.2011.02.005http://dx.doi.org/10.3969/j.issn.1007-2330.2011.02.005
胡培. ROHACELL技术手册. 上海: 赢创德固萨特种化学(上海)有限公司. 2005. 7-8.
Yan L. L.; Jiang W.; Zhang C.; Zhang Y. W.; He Z. H.; Zhu K. Y.; Chen N.; Zhang W. B.; Han B.; Zheng X. T. Enhancement by metallic tube filling of the mechanical properties of electromagnetic wave absorbent polymethacrylimide foam. Polymers, 2019, 11(2), 372. doi:10.3390/polym11020372http://dx.doi.org/10.3390/polym11020372
Seibert H. F. Applications for PMI foams in aerospace sandwich structures. Reinf. Plast., 2006, 50(1), 44-48. doi:10.1016/s0034-3617(06)70873-6http://dx.doi.org/10.1016/s0034-3617(06)70873-6
戴周军, 钱栋祥, 许漂, 赵强, 叶国友. PMI泡沫在直升机复合材料桨叶上的应用. 航空精密制造技术, 2021, 57(6), 38-41. doi:10.3969/j.issn.1003-5451.2021.06.010http://dx.doi.org/10.3969/j.issn.1003-5451.2021.06.010
黄诚, 刘德博, 吴会强, 常志龙. 我国航天运载器复合材料贮箱应用展望. 沈阳航空航天大学学报, 2016, 33(2), 27-35. doi:10.3969/j.issn.2095-1248.2016.02.006http://dx.doi.org/10.3969/j.issn.2095-1248.2016.02.006
王基祥. 国外航天运载器液氢箱绝热系统. 低温工程. 1993, (3), 1-6.
Li Z. Q.; Nan B. H.; He T. F.; Feng G. X. Study of bonding technology and property of foam-sandwich co-bulkhead of cryogenic tank on launch vehicle. Mater. Sci. Forum, 2015, 817, 639-644. doi:10.4028/www.scientific.net/msf.817.639http://dx.doi.org/10.4028/www.scientific.net/msf.817.639
李照谦, 南博华, 何腾锋, 崔凡, 毛惠明. 新一代运载火箭贮箱大温差泡沫夹层共底研制. 宇航材料工艺, 2016, 46(4), 68-72. doi:10.3969/j.issn.1007-2330.2016.04.017http://dx.doi.org/10.3969/j.issn.1007-2330.2016.04.017
李茂, 韩涵, 唐杰, 顾铖璋, 顾远之. 大温差隔热共底在运载贮箱中的应用研究. 上海航天, 2016, 33(S1), 43-49. doi:10.19328/j.cnki.1006-1630.2016.S1.008http://dx.doi.org/10.19328/j.cnki.1006-1630.2016.S1.008
张广成, 刘伟, 张璋, 杨利. 聚甲基丙烯酰亚胺(PMI)泡沫的进展. 橡塑技术与装备, 2021, 47(10), 23-30. doi:10.13520/j.cnki.rpte.2021.10.005http://dx.doi.org/10.13520/j.cnki.rpte.2021.10.005
Polimetakrilimida I. I. K. Isothermal imidation kinetics of polymethacrylimide based on in situ FTIR. Mater. Tehnol., 2019, 53(6), 865-871. doi:10.17222/mit.2019.070http://dx.doi.org/10.17222/mit.2019.070
Zhang Z. Y.; Xu M. J.; Li B. Preparation and characterization of polymethacrylimide/silicate foam. Polym. Adv. Technol., 2018, 29(12), 2982-2991. doi:10.1002/pat.4418http://dx.doi.org/10.1002/pat.4418
Zhang Z. Y.; Xu M. J.; Li B. Research on rapid preparation and performance of polymethacrylimide foams. J. Appl. Polym. Sci., 2017, 134(24), 44959. doi:10.1002/app.44959http://dx.doi.org/10.1002/app.44959
Chen X.; Zhang M.; Lei Y. Transformation of molecular structure during foaming of PMI foam. Aerosp. Mater. Technol., 2011, 41(5), 32-36.
艾素芬, 王帅, 杨庚翔, 洪崧, 邱家稳, 孟昊轩, 刘佳. 低温真空环境下不同密度二氧化硅气凝胶复合材料隔热性能研究. 北京化工大学学报(自然科学版), 2023, 50(1), 65-71.
商晋, 吕翠, 伍继浩. 聚氨酯硬质泡沫的低温应用研究现状. 低温与超导, 2017, 45(10), 10-15.
0
浏览量
26
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构