浏览全部资源
扫码关注微信
1.中国科学院化学研究所 北京分子科学国家研究中心 中国科学院工程塑料重点实验室 北京 100190
2.中国科学院大学 北京 100049
E-mail: weiyou@iccas.ac.cn
纸质出版日期:2023-12-20,
网络出版日期:2023-09-08,
收稿日期:2023-06-12,
录用日期:2023-07-31
扫 描 看 全 文
张银,王煜,尤伟.聚乙烯接枝香豆素衍生物作为多功能助剂的应用探究[J].高分子学报,2023,54(12):1836-1843.
Zhang Yin,Wang Yu,You Wei.Application of Polyethylene Grafted Coumarin Derivatives as Multifunctional Additives[J].Acta Polymerica Sinica,2023,54(12):1836-1843.
张银,王煜,尤伟.聚乙烯接枝香豆素衍生物作为多功能助剂的应用探究[J].高分子学报,2023,54(12):1836-1843. DOI: 10.11777/j.issn1000-3304.2023.23157.
Zhang Yin,Wang Yu,You Wei.Application of Polyethylene Grafted Coumarin Derivatives as Multifunctional Additives[J].Acta Polymerica Sinica,2023,54(12):1836-1843. DOI: 10.11777/j.issn1000-3304.2023.23157.
以商品化乙烯醋酸乙烯酯共聚物(EVA)为原料,通过Mitsunobu衍生化反应合成了以香豆素为功能侧基的多功能聚乙烯. 香豆素及其衍生物是一种多功能性的化合物,拥有抗菌、抗癌、光敏性、抗紫外线吸收以及抗氧化等特性,引入聚乙烯骨架可以赋予聚乙烯相似特性. 以红外和核磁表征手段对聚乙烯基香豆素衍生物结构进行了确认. 将其用作聚乙烯的加工助剂,不仅能够赋予聚乙烯基底抗菌和抗氧化的特性,而且还能够起到抗紫外线老化的效果;与此同时,相比于商用抗紫外线吸收剂,其不仅具有更为优越的抗紫外线老化性能,而且还能够有效避免助剂的迁移.
In recent years
there has been a great emphasis on improving the value of polyethylene (PE) products by developing high-performance PE products. Post-functionalization modification of PE is an effective method to achieve this goal. The use of additives for functionalized modification of PE is a straightforward and economical approach. However
most additives are organic small molecule compounds that tend to migrate
evaporate
or get lost from the polymer matrix through solvent extraction during the use of polymer products. This results in a decrease in product performance and poses a threat to human health
especially in the field of food packaging. Modifying small molecular additives by macromolecules has emerged as current research frontiers to address the aforementioned issues. This study aims to create macromolecular functional additives using functionalized PE with coumarin as the side groups. A PE derivative with coumarin as the functional side group is synthesized using the Mitsunobu derivatization reaction of commercial poly(ethylene-
co
-vinyl acetate) (EVA). The polymer structures are confirmed through infrared and nuclear magnetic resonance characterization. When used as an additive for PE
it not only provides antibacterial and antioxidant properties to the substrate
but also resists ultraviolet ageing. Additionally
it outperforms commercial UV absorbers (UV-329) by effectively avoiding the additive migration while maintaining superior UV ageing resistance.
聚烯烃功能化改性香豆素及其衍生物高分子助剂
Functional modification of polyolefinsCoumarin and its derivativesPolymer additives
Arroyave A.; Cui S.; Lopez J. C.; Kocen A. L.; LaPointe A. M.; Delferro M.; Coates G. W. Catalytic chemical recycling of post-consumer polyethylene. J. Am. Chem. Soc., 2022, 144(51), 23280-23285. doi:10.1021/jacs.2c11949http://dx.doi.org/10.1021/jacs.2c11949
Zou C.; Chen, C. Polar-functionalized, crosslinkable, self-healing, and polyolefinsphotoresponsive. Angew. Chem. Int. Ed., 2020, 59(1), 395-402. doi:10.1002/anie.201910002http://dx.doi.org/10.1002/anie.201910002
Frech S.; Theato P. Synthesizing Polyethylene from polyacrylates: a decarboxylation approach. ACS Macro Lett., 2022, 11(2), 161-165. doi:10.1021/acsmacrolett.1c00723http://dx.doi.org/10.1021/acsmacrolett.1c00723
Teo J. Y. Q.; Yeung C. W. S.; Tan T. T. Y.; Loh W. W.; Loh X. J.; Lim J. Y. C. Benzaldehyde-mediated selective aerobic polyethylene functionalisation with isolated backbone ketones. Green Chem., 2022, 24(16), 6287-6294. doi:10.1039/d2gc02502ghttp://dx.doi.org/10.1039/d2gc02502g
Westlie A. H.; Chen E. Y. X.; Holland C. M.; Stahl S. S.; Doyle M.; Trenor S. R.; Knauer K. M. Polyolefin innovations toward circularity and sustainable alternatives. Macromol. Rapid Commun., 2022, 43(24), 2200492. doi:10.1002/marc.202200492http://dx.doi.org/10.1002/marc.202200492
Qiao J.; Guo M.; Wang L.; Liu D.; Zhang X.; Yu L.; Song W.; Liu Y. Recent advances in polyolefin technology. Polym. Chem., 2011, 2(8), 1611-1623. doi:10.1039/c0py00352bhttp://dx.doi.org/10.1039/c0py00352b
Unterlass M. M.; Espinosa E.; Boisson F.; D'Agosto F.; Boisson C.; Ariga K.; Khalakhan I.; Charvet R.; Hill J. P. Polyethylenes bearing a terminal porphyrin group. Chem. Commun., 2011, 47(25), 7057-7059. doi:10.1039/c1cc12620bhttp://dx.doi.org/10.1039/c1cc12620b
Ciftci M.; Batat P.; Demirel A. L.; Xu G.; Buchmeiser M.; Yagci Y. Visible light-induced grafting from polyolefins. Macromolecules, 2013, 46(16), 6395-6401. doi:10.1021/ma401431hhttp://dx.doi.org/10.1021/ma401431h
Ciftci M.; Arslan M.; Buchmeiser M.; Yagci Y. Polyethylene-g-polystyrene copolymers by combination of ROMP, Mn2CO)10-assisted TEMPO substitution and-NMRP. ACS Macro Lett., 2016, 5(8), 946-949. doi:10.1021/acsmacrolett.6b00460http://dx.doi.org/10.1021/acsmacrolett.6b00460
Ciftci M.; Wang D.; Buchmeiser M.; Yagci Y. Modification of polyolefins by click chemistry. Macromol. Chem. Phys., 2017, 218(19), 1700279. doi:10.1002/macp.201700279http://dx.doi.org/10.1002/macp.201700279
Cecon V. S.; Da Silva P. F.; Vorst K. L.; Curtzwiler G. W. The effect of post-consumer recycled polyethylene (PCRPE) on the properties of polyethylene blends of different densities. Polym. Degrad. Stabil., 2021, 190, 109627. doi:10.1016/j.polymdegradstab.2021.109627http://dx.doi.org/10.1016/j.polymdegradstab.2021.109627
Yeung C. W. S.; Periayah M. H.; Teo J. Y. Q.; Goh E. T. L.; Chee P. L.; Loh W. W.; Loh X. J.; Lakshminarayanan R.; Lim J. Y. C. Transforming polyethylene into water-soluble antifungal polymers. Macromolecules, 2023, 56(3), 815-823. doi:10.1021/acs.macromol.2c01944http://dx.doi.org/10.1021/acs.macromol.2c01944
Chung T. C. Synthesis of functional polyolefin copolymers with graft and block structures. Prog. Polym. Sci., 2002, 27(1), 39-85. doi:10.1016/s0079-6700(01)00038-7http://dx.doi.org/10.1016/s0079-6700(01)00038-7
Ciftci M.; Kork S.; Xu G.; Buchmeiser M. R.; Yagci Y. Polyethylene-g-poly(cyclohexene oxide) by mechanistic transformation from ROMP to visible light-induced free radical promoted cationic polymerization. Macromolecules, 2015, 48(6), 1658-1663. doi:10.1021/acs.macromol.5b00086http://dx.doi.org/10.1021/acs.macromol.5b00086
Xu Y.; Thurber C. M.; Lodge T. P.; Hillmyer M. A. Synthesis and remarkable efficacy of model polyethylene-graft-poly(methyl methacrylate) copolymers as compatibilizers in polyethylene/poly(methyl methacrylate) blends. Macromolecules, 2012, 45(24), 9604-9610. doi:10.1021/ma302187bhttp://dx.doi.org/10.1021/ma302187b
Bunescu A.; Lee S.; Li Q.; Hartwig J. F. Catalytic hydroxylation of polyethylenes. ACS Cent. Sci., 2017, 3(8), 895-903. doi:10.1021/acscentsci.7b00255http://dx.doi.org/10.1021/acscentsci.7b00255
Shang R.; Gao H.; Luo F.; Li Y.; Wang B.; Ma Z.; Pan L.; Li Y. Functional isotactic polypropylenes via efficient direct copolymerizations of propylene with various amino-functionalized α-olefins. Macromolecules, 2019, 52(23), 9280-9290. doi:10.1021/acs.macromol.9b00757http://dx.doi.org/10.1021/acs.macromol.9b00757
付敏, 郭宝星. 聚乙烯材料热及光氧老化的研究进展. 四川化工, 2004, (6), 25-27. doi:10.3969/j.issn.1672-4887.2004.06.008http://dx.doi.org/10.3969/j.issn.1672-4887.2004.06.008
Song S.; Fu Z.; Xu J.; Fan Z. Synthesis of functional polyolefins via ring-opening metathesis polymerization of ester-functionalized cyclopentene and its copolymerization with cyclic comonomers. Polym. Chem., 2017, 8(38), 5924-5933. doi:10.1039/c7py01330bhttp://dx.doi.org/10.1039/c7py01330b
陆祺然, 尤伟. 基于聚乙烯的阴离子交换隔膜的制备策略. 高分子学报, 2020, 51(10), 1140-1146. doi:10.11777/j.issn1000-3304.2020.10123http://dx.doi.org/10.11777/j.issn1000-3304.2020.10123
Jasinska-Walc L.; Bouyahyi M.; Duchateau R. Potential of functionalized polyolefins in a sustainable polymer economy: synthetic strategies and applications. Acc. Chem. Res., 2022, 55(15), 1985-1996. doi:10.1021/acs.accounts.2c00195http://dx.doi.org/10.1021/acs.accounts.2c00195
Wang Y.; Su J.; Li T.; Ma P.; Bai H.; Xie Y.; Chen M.; Dong W. A novel UV-shielding and transparent polymer film: when bioinspired dopamine-melanin hollow nanoparticles join polymers. ACS Appl. Mater. Interfaces, 2017, 9(41), 36281-36289. doi:10.1021/acsami.7b08763http://dx.doi.org/10.1021/acsami.7b08763
Niu X.; Liu Y.; Fang G.; Huang C.; Rojas O. J.; Pan H. Highly transparent, strong, and flexible films with modified cellulose nanofiber bearing UV shielding property. Biomacromolecules, 2018, 19(12), 4565-4575. doi:10.1021/acs.biomac.8b01252http://dx.doi.org/10.1021/acs.biomac.8b01252
Liu H.; Yang H.; Zhu K.; Peng F.; Guo L.; Qi H. Facile fabrication of a polyvinyl alcohol-based hydrophobic fluorescent film via the Hantzsch reaction for broadband UV protection. Mater. Horiz., 2022, 9(2), 815-824. doi:10.1039/d1mh01783ghttp://dx.doi.org/10.1039/d1mh01783g
Parit M.; Du H.; Zhang X.; Jiang Z. Flexible, transparent, UV-protecting, water-resistant nanocomposite films based on polyvinyl alcohol and kraft lignin-grafted cellulose nanofibers. ACS Appl. Polym. Mater., 2022, 4(5), 3587-3597. doi:10.1021/acsapm.2c00157http://dx.doi.org/10.1021/acsapm.2c00157
Gao X.; Hu G.; Qian Z.; Ding Y.; Zhang S.; Wang D.; Yang M. Immobilization of antioxidant on nanosilica and the antioxidative behavior in low density polyethylene. Polymer, 2007, 48(25), 7309-7315. doi:10.1016/j.polymer.2007.10.015http://dx.doi.org/10.1016/j.polymer.2007.10.015
Zhao Y.; Dan Y. Preparation and characterization of a high molecular weight UV-stabilizer based on a derivative of 2,4-dihydroxybenzophenone and its application in polymer materials. J. Appl. Polym. Sci., 2006, 102(3), 2203-2211. doi:10.1002/app.24286http://dx.doi.org/10.1002/app.24286
Zhao Y.; Dan Y. Synthesis and characterization of a polymerizable benzophenone derivative and its application in styrenic polymers as UV-stabilizer. Eur. Polym. J., 2007, 43(10), 4541-4551. doi:10.1016/j.eurpolymj.2007.07.029http://dx.doi.org/10.1016/j.eurpolymj.2007.07.029
Zhang Y.; Li H.; Luo Z.; Li M.; Liu T.; Liu W.; Li Q.; Hu Y. Synthesis of polyethylene-grafted phosphite antioxidant and its antioxidant behavior in polypropylene. Macromol. Chem. Phys., 2020, 221(7), 1900540. doi:10.1002/macp.201900540http://dx.doi.org/10.1002/macp.201900540
Mousavi-Fakhrabadi S. H.; Ahmadi S.; Arabi H. Mixing of hindered amine-grafted polyolefin elastomers with LDPE to enhance its long-term weathering and photo-stability. Polym. Degrad. Stabil., 2022, 198, 109882. doi:10.1016/j.polymdegradstab.2022.109882http://dx.doi.org/10.1016/j.polymdegradstab.2022.109882
Zhang Y.; Li H.; Li M.; Liu W.; Li Q.; Hu Y. Synthesis and properties of novel polyethylene-based antioxidants with hindered phenols as side groups. Macromol. Chem. Phys., 2020, 221(3), 1900410. doi:10.1002/macp.201900410http://dx.doi.org/10.1002/macp.201900410
Klimovica K.; Pan S.; Lin T. W.; Peng X.; Ellison C. J.; LaPointe A. M.; Bates F. S.; Coates G. W. Compatibilization of iPP/HDPE blends with PE-g-iPP graft copolymers. ACS Macro Lett., 2020, 9(8), 1161-1166. doi:10.1021/acsmacrolett.0c00339http://dx.doi.org/10.1021/acsmacrolett.0c00339
Patra P. A concise review on pyridocoumarin/azacoumarin derivatives: synthesis and biological activity. ChemistrySelect, 2019, 4(7), 2024-2043. doi:10.1002/slct.201803596http://dx.doi.org/10.1002/slct.201803596
Zhang Y.; Wang T.; Bai J.; You W. Repurposing Mitsunobu reactions as a generic approach toward polyethylene derivatives. ACS Macro Lett., 2022, 11(1), 33-38. doi:10.1021/acsmacrolett.1c00689http://dx.doi.org/10.1021/acsmacrolett.1c00689
Neog K.; Dutta D.; Das B.; Gogoi P. Coumarin to isocoumarin: one-pot synthesis of 3-substituted isocoumarins from 4-hydroxycoumarins and benzyne precursors. Org. Lett., 2017, 19(3), 730-733. doi:10.1021/acs.orglett.7b00027http://dx.doi.org/10.1021/acs.orglett.7b00027
Bedjaoui K.; Krache R.; Marcos-Fernández A.; Guessoum M. The effect of compatibilizer SEBS on the mechanical, morphological and thermal properties of the polystyrene/poly(styrene-co-acrylonitrile) copolymer blends. Mater. Res. Express, 2019, 6(10), 105334. doi:10.1088/2053-1591/ab38e7http://dx.doi.org/10.1088/2053-1591/ab38e7
Gao M.; Zhu Y.; Yan J.; Wu W.; Wang B. Micromechanism study of molecular compatibility of PVDF/PEI blend membrane. Membranes, 2022, 12(8), 809. doi:10.3390/membranes12080809http://dx.doi.org/10.3390/membranes12080809
Gao X.; Meng X.; Wang H.; Wen B.; Ding Y.; Zhang S.; Yang M. Antioxidant behaviour of a nanosilica-immobilized antioxidant in polypropylene. Polym. Degrad. Stabil., 2008, 93(8), 1467-1471. doi:10.1016/j.polymdegradstab.2008.05.009http://dx.doi.org/10.1016/j.polymdegradstab.2008.05.009
Wang X.; Wang B.; Song L.; Wen P.; Tang G.; Hu Y. Antioxidant behavior of a novel sulfur-bearing hindered phenolic antioxidant with a high molecular weight in polypropylene. Polym. Degrad. Stabil., 2013, 98(9), 1945-1951. doi:10.1016/j.polymdegradstab.2013.05.019http://dx.doi.org/10.1016/j.polymdegradstab.2013.05.019
Shi X.; Wang J.; Jiang B.; Yang Y. Hindered phenol grafted carbon nanotubes for enhanced thermal oxidative stability of polyethylene. Polymer, 2013, 54(3), 1167-1176. doi:10.1016/j.polymer.2012.12.062http://dx.doi.org/10.1016/j.polymer.2012.12.062
赵增辉; 李英; 李倩; 李化毅. 端苝基功能化聚乙烯的制备及其应用. 石油化工, 2020, 49(10), 953-959. doi:10.3969/j.issn.1000-8144.2020.10.005http://dx.doi.org/10.3969/j.issn.1000-8144.2020.10.005
0
浏览量
42
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构