浏览全部资源
扫码关注微信
中国科学院兰州化学物理研究所 固体润滑国家重点实验室 兰州 730000
E-mail: yaomingzhang@licp.cas.cn
纸质出版日期:2023-12-20,
网络出版日期:2023-09-23,
收稿日期:2023-06-12,
录用日期:2023-08-07
扫 描 看 全 文
杨靖,李彦辉,陈守兵等.盾构机主驱动密封用聚氨酯脲弹性体密封材料的研究[J].高分子学报,2023,54(12):1857-1869.
Yang Jing,Li Yan-hui,Chen Shou-bing,et al.Study on Poly(urethane-urea) Elastomers as Sealing Material for Tunneling Boring Machine’s Main Drive[J].Acta Polymerica Sinica,2023,54(12):1857-1869.
杨靖,李彦辉,陈守兵等.盾构机主驱动密封用聚氨酯脲弹性体密封材料的研究[J].高分子学报,2023,54(12):1857-1869. DOI: 10.11777/j.issn1000-3304.2023.23159.
Yang Jing,Li Yan-hui,Chen Shou-bing,et al.Study on Poly(urethane-urea) Elastomers as Sealing Material for Tunneling Boring Machine’s Main Drive[J].Acta Polymerica Sinica,2023,54(12):1857-1869. DOI: 10.11777/j.issn1000-3304.2023.23159.
以聚四氢呋喃二醇(PTMEG)、甲苯2
4-二异氰酸酯(TDI)和3
3'-二氯-4
4'-二氨基二苯基甲烷(MOCA)为原料,通过使用不同含量的有机硅树脂(PDMS)对其改性,制备了4种浇注型聚氨酯脲弹性体(PUU-s). 系统地研究了PDMS的含量对聚氨酯脲弹性体力学性能、耐热性能、耐疲劳性能、可回复性能、耐介质性能以及摩擦学性能的影响. 结果表明,PDMS改性的PUU-s弹性体,不仅具有较高的机械性能,且具有优异的耐磨性和耐介质性以及较高的可回复性,可作为苛刻工况下的密封材料. 其有望作为盾构机主驱动密封用材料,提高了密封部件的长寿命服役,解决了磨损失效等问题.
Four kinds of castable poly(urethane-urea) elastomers (PUU-s) were prepared by introducing different contents of hydroxy-terminated polydimethylsiloxane (PDMS) to the PUU
which was synthesized with polytetramethylene ether glycol (PTMEG)
2
4-diisocyanato-1-methylbenzene (TDI) and 4
4'-methylene-bis(2-chloroaniline) (MOCA). The effects of PDMS content on the mechanical properties
heat resistance
fatigue resistance
recoverability
dielectric resistance
and tribological properties of PUU-s were systematically studied. The results show the diamine used as curing agent reacted with ―NCO and yielded the urea group
which offer high density hydrogen bonding sites that allows the PUU elastomers to perform an excellent mechanical properties. The tensile strength
elongation at break and toughness of modified PUU-4 wt% elastomers are (36.6±1.3) MPa
(527.6±10.9)% and (88±4.7) MJ/m
3
respectively. While PDMS was introduced to the PUU through chemical bonding
the PDMS content affects the physico-chemical properties of the PUU. The transition temperature of PUU-s elastomer decreases from -24.3 ℃ to -26.4 ℃ with the increase of PDMS content. The lower surface energy of PDMS endows PUU-s elastomer with excellent heat resistance (
T
HRI
= 165.95 ℃) and hydrophobic properties (surface energy = 44.8 mN/m). In addition
due to the enrichment of PDMS on the surface of PUU-s elastomer
the wear loss and friction coefficients decreased from 0.074 cm
3
/1.61km and 0.2 to 0.022 cm
3
/1.61km and 0.05
respectively. The excellent anti-wear resistance is comparable to that of commercial high-performance thermoplastic polyurethane. Moreover
the poly(urethane-urea) elastomer prepared in this study possesses excellent solvent resistance
the tensile strength remains (45.48±7.3) MPa even after long-term immersion in 80 ℃ water
which indicates the long service life of our PUU elastomer as sealing material. On one hand
the flexibility of PDMS could reduce the intramolecular friction
on the other hand
the dynamic dissociation and recombination of high-density hydrogen bonds consumes partially solve the friction heat accumulation caused wear and sealing failure. Therefore
the PUU synthesized here can be used as a sealing material under harsh conditions
such as the sealing material for the main drive of the tunneling boring machine.
聚氨酯脲摩擦学性能有机硅树脂密封材料
Poly(urethane-urea)Tribological propertiesSilicone resinSealing materials
赵雨花, 王军威, 亢茂青, 殷宁, 贾林才, 王心葵. 液压支架密封圈用聚氨酯弹性体的性能. 合成橡胶工业, 2014, 37(3), 182-187. doi:10.3969/j.issn.1000-1255.2014.03.006http://dx.doi.org/10.3969/j.issn.1000-1255.2014.03.006
李裕琪, 徐旭, 赵良传, 陆绍荣, 王廷梅, 徐斌. 用于水润滑轴承的聚氨酯/环氧树脂/短切碳纤维复合材料的制备及摩擦学性能. 合成橡胶工业, 2017, 40(3), 207-211. doi:10.3969/j.issn.1000-1255.2017.03.008http://dx.doi.org/10.3969/j.issn.1000-1255.2017.03.008
李国华. 聚氨酯橡胶密封件在煤矿设备上的应用. 特种橡胶制品, 2002, 23(2), 36-37. doi:10.3969/j.issn.1005-4030.2002.02.013http://dx.doi.org/10.3969/j.issn.1005-4030.2002.02.013
韩胜广, 吴斌, 邱召佩. 采煤机械油缸密封材料用聚氨酯弹性体的研究. 聚氨酯工业, 2019, 34(1), 28-30. doi:10.3969/j.issn.1005-1902.2019.01.008http://dx.doi.org/10.3969/j.issn.1005-1902.2019.01.008
肖军. 液压橡胶密封件的结构性能及使用. 世界制造技术与装备市场, 2010, (3), 94-100. doi:10.3969/j.issn.1015-4809.2010.03.024http://dx.doi.org/10.3969/j.issn.1015-4809.2010.03.024
赵雨花, 王军威, 亢茂青, 殷宁, 贾林才. 高性能聚氨酯密封材料的微相结构和热性能(Ⅱ). 热固性树脂, 2016, 31(4), 42-45.
彭威, 王功海, 叶世荣, 薛志非, 莫湘婧. 密封圈用聚氨酯弹性体的合成及其性能研究. 聚氨酯工业, 2016, 31(6), 37-39. doi:10.3969/j.issn.1005-1902.2016.06.014http://dx.doi.org/10.3969/j.issn.1005-1902.2016.06.014
区洁, 田立颖, 王新灵. 软硬段对聚氨酯弹性体结构性能的影响. 功能高分子学报, 2010, 23(2), 160-165.
吴斌, 黄雪梅, 罗文顺. 软段对聚氨酯弹性体耐介质及力学性能影响的研究. 聚氨酯工业, 2018, 33(3), 35-38. doi:10.3969/j.issn.1005-1902.2018.03.010http://dx.doi.org/10.3969/j.issn.1005-1902.2018.03.010
吴斌, 张楠. 掘进机主驱动聚氨酯密封材料的研究. 聚氨酯工业, 2022, 37(1), 16-19. doi:10.3969/j.issn.1005-1902.2022.01.005http://dx.doi.org/10.3969/j.issn.1005-1902.2022.01.005
Naheed S.; Zuber M.; Barikani M.; Salman M. Molecular engineering and morphology of polyurethane elastomers containing various molecular weight of macrodiol. Mater. Sci. Eng. B, 2021, 264, 114960. doi:10.1016/j.mseb.2020.114960http://dx.doi.org/10.1016/j.mseb.2020.114960
Klinedinst D. B.; Yilgör I.; Yilgör E.; Zhang M. Q.; Wilkes G. L. The effect of varying soft and hard segment length on the structure-property relationships of segmented polyurethanes based on a linear symmetric diisocyanate, 1,4-butanediol and PTMO soft segments. Polymer, 2012, 53(23), 5358-5366. doi:10.1016/j.polymer.2012.08.005http://dx.doi.org/10.1016/j.polymer.2012.08.005
Wang Y. J.; Wang L. L.; Liu H.; He S. Q.; Liu X. Y.; Liu W. T.; Huang M. M.; Zhu C. S. Polyurethane as smart biocoatings: effects of hard segments on phase structures and properties. Prog. Org. Coat., 2021, 150, 106000. doi:10.1016/j.porgcoat.2020.106000http://dx.doi.org/10.1016/j.porgcoat.2020.106000
Yilgör I.; Yilgör E.; Wilkes G. L. Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: a comprehensive review. Polymer, 2015, 58, A1-A36. doi:10.1016/j.polymer.2014.12.014http://dx.doi.org/10.1016/j.polymer.2014.12.014
Truong T. T.; Thai S. H.; Nguyen H. T.; Phung D. T. T.; Nguyen L. T.; Pham H. Q.; Nguyen L. T. T. Tailoring the hard-soft interface with dynamic diels-alder linkages in polyurethanes: toward superior mechanical properties and healability at mild temperature. Chem. Mater., 2019, 31(7), 2347-2357. doi:10.1021/acs.chemmater.8b04624http://dx.doi.org/10.1021/acs.chemmater.8b04624
赵云行, 贺春江, 杜卫超, 陈梦, 贾颖华. 聚醚二醇对耐低温聚氨酯弹性体性能的影响研究. 聚氨酯工业, 2020, 35(1), 12-15. doi:10.3969/j.issn.1005-1902.2020.01.004http://dx.doi.org/10.3969/j.issn.1005-1902.2020.01.004
季德惠, 何晓荣, 沈明学, 李波, 熊光耀, 张执南. 不同服役温度下聚氨酯密封材料的摩擦学行为研究. 表面技术, 2021, 50(2), 238-245.
刘玲, 张军营, 孟庆函, 王心葵. CaSO4晶须/聚氨酯弹性体复合材料性能的研究. 弹性体, 2003, 13(4), 22-25. doi:10.3969/j.issn.1005-3174.2003.04.006http://dx.doi.org/10.3969/j.issn.1005-3174.2003.04.006
鲍志强, 吴斌, 黄兴, 张楠. 二硫化钼/热塑性聚氨酯弹性体复合材料性能研究. 聚氨酯工业, 2020, 35(3), 12-15. doi:10.3969/j.issn.1005-1902.2020.03.004http://dx.doi.org/10.3969/j.issn.1005-1902.2020.03.004
杨绪迎. 聚氨酯弹性体与丁腈橡胶共混物作为水下声纳设备密封材料的研究. 橡胶参考资料, 2012, 42(2), 2-7.
李娇, 孙义明, 彭少贤, 程燕. MPU/UHMWPE共混体系的摩擦学性能及拉伸性能. 机械工程材料, 2015, 39(4), 35-38.
Choi T.; Weksler J.; Padsalgikar A.; Runt J. Influence of soft segment composition on phase-separated microstructure of polydimethylsiloxane-based segmented polyurethane copolymers. Polymer, 2009, 50(10), 2320-2327. doi:10.1016/j.polymer.2009.03.024http://dx.doi.org/10.1016/j.polymer.2009.03.024
Lv G. G.; Hu J.; Hao X. Y.; Ning N. Y.; Yu B.; Tian M. Preparation and compatibility mechanism study of the polyurethane-polysiloxane copolymer with tunable polysiloxane content for TPU/MVQ blends with comfortable texture. Polym. Chem., 2023, 14(18), 2246-2255. doi:10.1039/d3py00157ahttp://dx.doi.org/10.1039/d3py00157a
Chang S. L.; Deng Y.; Li N.; Wang L. J.; Shan C. X.; Dong L. Continuous synthesis of ultra-fine fiber for wearable mechanoluminescent textile. Nano Res., 2023, 16(7), 9379-9386. doi:10.1007/s12274-023-5587-0http://dx.doi.org/10.1007/s12274-023-5587-0
Wu X. Z.; Wang J. Q.; Huang J. X.; Yang S. R. Robust, stretchable, and self-healable supramolecular elastomers synergistically cross-linked by hydrogen bonds and coordination bonds. ACS Appl. Mater. Interfaces, 2019, 11(7), 7387-7396. doi:10.1021/acsami.8b20303http://dx.doi.org/10.1021/acsami.8b20303
Gallego R.; Arteaga J. F.; Valencia C.; Franco J. M. Thickening properties of several NCO-functionalized cellulose derivatives in castor oil. Chem. Eng. Sci., 2015, 134, 260-268. doi:10.1016/j.ces.2015.05.007http://dx.doi.org/10.1016/j.ces.2015.05.007
Ariati R.; Sales F.; Souza A.; Lima R. A.; Ribeiro J. Polydimethylsiloxane composites characterization and its applications: a review. Polymers, 2021, 13(23), 4258. doi:10.3390/polym13234258http://dx.doi.org/10.3390/polym13234258
易玉华, 陈智兴. 混合扩链剂对聚氨酯弹性体氢键和阻尼性能的影响. 湖南大学学报(自然科学版), 2022, 49(12), 142-147.
Xu C. G.; Lu M. G.; Wu K.; Shi J. Effects of polyether and polyester polyols on the hydrophobicity and surface properties of polyurethane/polysiloxane elastomers. Macromol. Res., 2020, 28(11), 1032-1039. doi:10.1007/s13233-020-8138-5http://dx.doi.org/10.1007/s13233-020-8138-5
Yang X. T.; Guo Y. Q.; Luo X.; Zheng N.; Ma T. B.; Tan J. J.; Li C. M.; Zhang Q. Y.; Gu J. W. Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization. Compos. Sci. Technol., 2018, 164, 59-64. doi:10.1016/j.compscitech.2018.05.038http://dx.doi.org/10.1016/j.compscitech.2018.05.038
Liu Z.; Zhang J. L.; Tang L.; Zhou Y. X.; Lin Y. H.; Wang R. T.; Kong J.; Tang Y. S.; Gu J. W. Improved wave-transparent performances and enhanced mechanical properties for fluoride-containing PBO precursor modified cyanate ester resins and their PBO fibers/cyanate ester composites. Compos. Part B, 2019, 178, 107466. doi:10.1016/j.compositesb.2019.107466http://dx.doi.org/10.1016/j.compositesb.2019.107466
Gu J. W.; Lv Z. Y.; Wu Y. L.; Guo Y. Q.; Tian L. D.; Qiu H.; Li W. Z.; Zhang Q. Y. Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in-situ polymerization-electrospinning-hot press method. Compos. Part A, 2017, 94, 209-216. doi:10.1016/j.compositesa.2016.12.014http://dx.doi.org/10.1016/j.compositesa.2016.12.014
Zhang W. G.; Zou X. B.; Liu X. L.; Liang Z.; Ge Z.; Luo Y. J. Preparation and properties of waterborne polyurethane modified by aminoethylaminopropyl polydimethylsiloxane for fluorine-free water repellents. Prog. Org. Coat., 2020, 139, 105407. doi:10.1016/j.porgcoat.2019.105407http://dx.doi.org/10.1016/j.porgcoat.2019.105407
Kulkarni S. A.; Ogale S. B.; Vijayamohanan K. P. Tuning the hydrophobic properties of silica particles by surface silanization using mixed self-assembled monolayers. J. Colloid Interface Sci., 2008, 318(2), 372-379. doi:10.1016/j.jcis.2007.11.012http://dx.doi.org/10.1016/j.jcis.2007.11.012
Xu C. G.; Qu Z. C.; Tan Z. Y.; Nan B. F.; Meng H. F.; Wu K.; Shi J.; Lu M. G.; Liang L. Y. High-temperature resistance and hydrophobic polysiloxane-based polyurethane films with cross-linked structure prepared by the sol-gel process. Polym. Test., 2020, 86, 106485. doi:10.1016/j.polymertesting.2020.106485http://dx.doi.org/10.1016/j.polymertesting.2020.106485
Yang J.; Cao P. R.; Gao K. T.; Ding C.; Chen S. B.; Zhang X. R.; Wang T. M.; Wang Q. H.; Zhang Y. M. Thermal tunable tribological behavior of shape memory biphenyl epoxy resin. Coatings, 2023, 13(1), 166. doi:10.3390/coatings13010166http://dx.doi.org/10.3390/coatings13010166
Ying W. B.; Yu Z.; Kim D. H.; Lee K. J.; Hu H.; Liu Y. W.; Kong Z. Y.; Wang K.; Shang J. E.; Zhang R. Y.; Zhu J.; Li R. W. Waterproof, highly tough, and fast self-healing polyurethane for durable electronic skin. ACS Appl. Mater. Interfaces, 2020, 12(9), 11072-11083. doi:10.1021/acsami.0c00443http://dx.doi.org/10.1021/acsami.0c00443
Qin X.; Han B. Y.; Lu J. M.; Wang Z.; Sun Z.; Wang D.; Russell T. P.; Zhang L. Q.; Liu J. Rational design of advanced elastomer nanocomposites towards extremely energy-saving tires based on macromolecular assembly strategy. Nano Energy, 2018, 48, 180-188. doi:10.1016/j.nanoen.2018.03.038http://dx.doi.org/10.1016/j.nanoen.2018.03.038
Wang T. M.; Zhao G.; Wang Q. H. Influence of the hard segment content on the mechanical and tribological properties of the polyurethane modified by hydroxyl-terminated polydimethylsiloxane under different lubricated conditions. Polym. Compos., 2012, 33(5), 812-818. doi:10.1002/pc.22212http://dx.doi.org/10.1002/pc.22212
0
浏览量
30
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构