浏览全部资源
扫码关注微信
北京化工大学材料科学与工程学院 北京 100029
E-mail:dingxk@mail.buct.edu.cn
E-mail:xufj@mail.buct.edu.cn;
纸质出版日期:2024-01-20,
网络出版日期:2023-09-08,
收稿日期:2023-06-13,
录用日期:2023-07-13
移动端阅览
殷光明, 赵娜娜, 丁小康, 徐福建. D-酪氨酸与多黏菌素B修饰高分子涂层的构建及其抗细菌生物被膜功能研究. 高分子学报, 2024, 55(1), 13-26
Yin, G. M.; Zhao, N. N.; Ding, X. K.; Xu, F. J. Fabrication of D-tyrosine and polymyxin B modified polymer coatings and their functions in resisting bacterial biofilm formation. Acta Polymerica Sinica, 2024, 55(1), 13-26
殷光明, 赵娜娜, 丁小康, 徐福建. D-酪氨酸与多黏菌素B修饰高分子涂层的构建及其抗细菌生物被膜功能研究. 高分子学报, 2024, 55(1), 13-26 DOI: 10.11777/j.issn1000-3304.2023.23160.
Yin, G. M.; Zhao, N. N.; Ding, X. K.; Xu, F. J. Fabrication of D-tyrosine and polymyxin B modified polymer coatings and their functions in resisting bacterial biofilm formation. Acta Polymerica Sinica, 2024, 55(1), 13-26 DOI: 10.11777/j.issn1000-3304.2023.23160.
聚氯乙烯(PVC)医用导管在使用过程中容易形成细菌生物被膜并引发细菌感染,严重威胁患者生命健康. 本研究采用酸敏感动态共价键将具有促进细菌生物被膜解散功能的
D
-酪氨酸、具有杀菌功能的多黏菌素B,以及具有良好生物相容性的醛化葡聚糖修饰到医用导管常用的PVC材料表面,并研究其抗细菌生物被膜形成的功能. 研究表明,修饰
D
-酪氨酸的高分子涂层能够有效抑制PVC表面细菌生物被膜的形成,结晶紫染色的结果表明具有多层交联高分子涂层修饰的PVC表面可以显著降低细菌生物被膜的生成(
n
=3,***
p
<
0.001),形成的生物被膜仅为未修饰PVC片材表面形成生物被膜的7.2%. 该多层交联高分子涂层可有效减少植入体周围细菌感染引发的组织炎症,为构建抗细菌生物被膜医用导管提供了一种新的策略.
Poly(vinyl chloride) (PVC) medical catheters are prone to form bacterial biofilms and result in bacterial infections during application
which pose formidable threat to public health. As the antibiotic molecules are difficult to penetrate into the biofilms to kill bacteria
there is an urgent demand in developing polymer coatings to resist the formation of bacterial biofilms. Herein
the functional molecules of
D
-tyrosine
which triggers the disassembly of biofilms
polymyxin B
which is able to kill bacteria
and aldehyde-modified dextran
which has good biocompatibility
are modified onto the surface of PVC
and their functions in resisting the formation of bacterial biofilms are studied. The results show that the polymer coatings modified with
D
-tyrosine can resist the formation of bacterial biofilms on the substrate of PVC and reduce the tissue inflammation caused by bacterial infections. This research provides a new strategy for the manufacturing of biofilm-resisting PVC catheters for medical applications.
细菌生物被膜D-酪氨酸高分子涂层抗菌导管
Bacterial biofilmD-tyrosinePolymer coatingAntibacterial catheter
Xie Y.; Yu B. R.; Zhang Y. C.; Wang Y.; Li P. F.; Zhang Q. N.; Duan S.; Ding X. J.; Xu F. J. Antibacterial plasticizers based on bio-based engineering elastomers for medical PVC: synthesis, characterization and properties. Polym. Chem., 2021, 12(8), 1114-1124. doi:10.1039/d0py01702ghttp://dx.doi.org/10.1039/d0py01702g
Wei T.; Yu Q.; Chen H. Responsive and synergistic antibacterial coatings: fighting against bacteria in a smart and effective way. Adv. Healthc. Mater., 2019, 8(3), 1801381. doi:10.1002/adhm.201801381http://dx.doi.org/10.1002/adhm.201801381
Lu Z. Y.; Wu Y. M.; Cong Z. H.; Qian Y. X.; Wu X.; Shao N.; Qiao Z. Q.; Zhang H. D.; She Y. R.; Chen K.; Xiang H. X.; Sun B.; Yu Q.; Yuan Y.; Lin H. D.; Zhu M. F.; Liu R. H. Effective and biocompatible antibacterial surfaces via facile synthesis and surface modification of peptide polymers. Bioact. Mater., 2021, 6(12), 4531-4541. doi:10.1016/j.bioactmat.2021.05.008http://dx.doi.org/10.1016/j.bioactmat.2021.05.008
Wei T.; Tang Z. C.; Yu Q.; Chen H. Smart antibacterial surfaces with switchable bacteria-killing and bacteria-releasing capabilities. ACS Appl. Mater. Interfaces, 2017, 9(43), 37511-37523. doi:10.1021/acsami.7b13565http://dx.doi.org/10.1021/acsami.7b13565
Stoodley P.; Sauer K.; Davies D. G.; Costerton J. W. Biofilms as complex differentiated communities. Annu. Rev. Microbiol., 2002, 56, 187-209. doi:10.1146/annurev.micro.56.012302.160705http://dx.doi.org/10.1146/annurev.micro.56.012302.160705
Min J.; Choi K. Y.; Dreaden E. C.; Padera R. F.; Braatz R. D.; Spector M.; Hammond P. T. Designer dual therapy nanolayered implant coatings eradicate biofilms and accelerate bone tissue repair. ACS Nano, 2016, 10(4), 4441-4450. doi:10.1021/acsnano.6b00087http://dx.doi.org/10.1021/acsnano.6b00087
Hu Y. L.; Ruan X. H.; Lv X. Y.; Xu Y.; Wang W. J.; Cai Y.; Ding M.; Dong H.; Shao J. J.; Yang D. L.; Dong X. C. Biofilm microenvironment-responsive nanoparticles for the treatment of bacterial infection. Nano Today, 2022, 46, 101602. doi:10.1016/j.nantod.2022.101602http://dx.doi.org/10.1016/j.nantod.2022.101602
Tian S.; Su L. Z.; Liu Y.; Cao J. J.; Yang G.; Ren Y. J.; Huang F.; Liu J. F.; An Y. L.; van der Mei H. C.; Busscher H. J.; Shi L. Q. Self-targeting, zwitterionic micellar dispersants enhance antibiotic killing of infectious biofilms—an intravital imaging study in mice. Sci. Adv., 2020, 6(33), eabb1112. doi:10.1126/sciadv.abb1112http://dx.doi.org/10.1126/sciadv.abb1112
Sun L.; Jiang W. Y.; Zhang H. R.; Guo Y. S.; Chen W.; Jin Y. Y.; Chen H.; Du K. H.; Dai H. D.; Ji J.; Wang B. L. Photosensitizer-loaded multifunctional chitosan nanoparticles for simultaneous in situ imaging, highly efficient bacterial biofilm eradication, and tumor ablation. ACS Appl. Mater. Interfaces, 2019, 11(2), 2302-2316. doi:10.1021/acsami.8b19522http://dx.doi.org/10.1021/acsami.8b19522
Davies D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov., 2003, 2(2), 114-122. doi:10.1038/nrd1008http://dx.doi.org/10.1038/nrd1008
Wang A. Z.; Duan S.; Hu Y.; Ding X. K.; Xu F. J. Fluorination of polyethylenimines for augmentation of antibacterial potency via structural damage and potential dissipation of bacterial membranes. ACS Appl. Mater. Interfaces, 2022, 14(39), 44173-44182. doi:10.1021/acsami.2c12692http://dx.doi.org/10.1021/acsami.2c12692
Wang A. Z.; Duan S.; Ding X. J.; Zhao N. N.; Hu Y.; Ding X. K.; Xu F. J. Bioswitchable antibacterial coatings enable self-sterilization of implantable healthcare dressings. Adv. Funct. Mater., 2021, 31(18), 2011165. doi:10.1002/adfm.202011165http://dx.doi.org/10.1002/adfm.202011165
Tong W.; Xiong Y. H.; Duan S.; Ding X. K.; Xu F. J. Phthalocyanine functionalized poly(glycidyl methacrylate) nano-assemblies for photodynamic inactivation of bacteria. Biomater. Sci., 2019, 7(5), 1905-1918. doi:10.1039/c8bm01483chttp://dx.doi.org/10.1039/c8bm01483c
Ding X. K.; Wang A. Z.; Tong W.; Xu F. J. Biodegradable antibacterial polymeric nanosystems: a new hope to cope with multidrug-resistant bacteria. Small, 2019, 15(20), 1900999. doi:10.1002/smll.201900999http://dx.doi.org/10.1002/smll.201900999
Ding X. K.; Duan S.; Ding X. J.; Liu R. H.; Xu F. J. Versatile antibacterial materials: an emerging arsenal for combatting bacterial pathogens. Adv. Funct. Mater., 2018, 28(40), 1802140. doi:10.1002/adfm.201802140http://dx.doi.org/10.1002/adfm.201802140
Flemming H. C.; Wingender J.; Szewzyk U.; Steinberg P.; Rice S. A.; Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol., 2016, 14(9), 563-575. doi:10.1038/nrmicro.2016.94http://dx.doi.org/10.1038/nrmicro.2016.94
Rumbaugh K. P.; Sauer, K. Biofilm dispersion. Nat. Rev. Microbiol., 2020, 18(10), 571-586. doi:10.1038/s41579-020-0385-0http://dx.doi.org/10.1038/s41579-020-0385-0
Kolodkin-Gal I.; Romero D.; Cao S. G.; Clardy J.; Kolter R.; Losick R. D-amino acids trigger biofilm disassembly. Science, 2010, 328(5978), 627-629. doi:10.1126/science.1188628http://dx.doi.org/10.1126/science.1188628
Davies D. G.; Marques C. N. H. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J. Bacteriol., 2009, 191(5), 1393-1403. doi:10.1128/jb.01214-08http://dx.doi.org/10.1128/jb.01214-08
Barraud N.; Kardak B. G.; Yepuri N. R.; Howlin R. P.; Webb J. S.; Faust S. N.; Kjelleberg S.; Rice S. A.; Kelso M. J. Cephalosporin-3'-diazeniumdiolates: targeted NO-donor prodrugs for dispersing bacterial biofilms. Angew. Chem. Int. Ed., 2012, 51(36), 9057-9060. doi:10.1002/anie.201202414http://dx.doi.org/10.1002/anie.201202414
Barraud N.; Hassett D. J.; Hwang S. H.; Rice S. A.; Kjelleberg S.; Webb J. S. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J. Bacteriol., 2006, 188(21), 7344-7353. doi:10.1128/jb.00779-06http://dx.doi.org/10.1128/jb.00779-06
Mekonnen S. A.; El Husseini N.; Turdiev A.; Carter J. A.; Belew A. T.; El-Sayed N. M.; Lee V. T. Catheter-associated urinary tract infection by Pseudomonas aeruginosa progresses through acute and chronic phases of infection. Proc. Natl. Acad. Sci. U. S. A., 2022, 119, e2209383119.. doi:10.1073/pnas.2209383119http://dx.doi.org/10.1073/pnas.2209383119
Jiang W. N.; Xiao X. M.; Wu Y. M.; Zhang W. W.; Cong Z. H.; Liu J. J.; Chen S.; Zhang H. D.; Xie J. Y.; Deng S. A.; Chen M. Z.; Wang Y.; Shao X. Y.; Dai Y. D.; Sun Y.; Fei J. A.; Liu R. H. Peptide polymer displaying potent activity against clinically isolated multidrug resistant Pseudomonas aeruginosa in vitro and in vivo. Biomater. Sci., 2020, 8(2), 739-745. doi:10.1039/c9bm01726ghttp://dx.doi.org/10.1039/c9bm01726g
Betts J. W.; Hornsey M.; Higgins P. G.; Lucassen K.; Wille J.; Salguero F. J.; Seifert H.; La Ragione R. M. Restoring the activity of the antibiotic aztreonam using the polyphenol epigallocatechin gallate (EGCG) against multidrug-resistant clinical isolates of Pseudomonas aeruginosa. J. Med. Microbiol., 2019, 68(10), 1552-1559. doi:10.1099/jmm.0.001060http://dx.doi.org/10.1099/jmm.0.001060
Zhong G. S.; Cheng J. C.; Liang Z. C.; Xu L.; Lou W. Y.; Bao C.; Ong Z. Y.; Dong H. H.; Yang Y. Y.; Fan W. M. Short synthetic β-sheet antimicrobial peptides for the treatment of multidrug-resistant Pseudomonas aeruginosa burn wound infections. Adv. Healthc. Mater., 2017, 6, 1601134. doi:10.1002/adhm.201601134http://dx.doi.org/10.1002/adhm.201601134
Poirel L.; Jayol A.; Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin. Microbiol. Rev., 2017, 30(2), 557-596. doi:10.1128/cmr.00064-16http://dx.doi.org/10.1128/cmr.00064-16
Kim S. J.; Chang J.; Singh M. Peptidoglycan architecture of Gram-positive bacteria by solid-state NMR. Biochim. Biophys. Acta BBA Biomembr., 2015, 1848(1), 350-362. doi:10.1016/j.bbamem.2014.05.031http://dx.doi.org/10.1016/j.bbamem.2014.05.031
0
浏览量
170
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构