浏览全部资源
扫码关注微信
华中科技大学化学与化工学院 能量转换与存储材料化学教育部重点实验室 材料化学与服役失效湖北省重点实验室 武汉 430074
E-mail: jiangpingxu@hust.edu.cn
纸质出版日期:2023-12-20,
网络出版日期:2023-09-08,
收稿日期:2023-06-23,
录用日期:2023-07-21
扫 描 看 全 文
张梦梦,韩国强,刘思萌等.基于温度/pH双响应的聚合物表面活性剂调控嵌段共聚物微球形貌[J].高分子学报,2023,54(12):1870-1879.
Zhang Meng-meng,Han Guo-qiang,Liu Si-meng,et al.Morphology Switchable Block Copolymer Microparticles by Temperature/pH Dual Responsive Polymer Surfactant[J].Acta Polymerica Sinica,2023,54(12):1870-1879.
张梦梦,韩国强,刘思萌等.基于温度/pH双响应的聚合物表面活性剂调控嵌段共聚物微球形貌[J].高分子学报,2023,54(12):1870-1879. DOI: 10.11777/j.issn1000-3304.2023.23164.
Zhang Meng-meng,Han Guo-qiang,Liu Si-meng,et al.Morphology Switchable Block Copolymer Microparticles by Temperature/pH Dual Responsive Polymer Surfactant[J].Acta Polymerica Sinica,2023,54(12):1870-1879. DOI: 10.11777/j.issn1000-3304.2023.23164.
研发响应多重外界刺激而改变形貌的嵌段共聚物微球对发展新型智能材料具有重要意义. 本工作提出了一种温度/pH双响应嵌段共聚物微球形貌转变的策略. 在利用乳液挥发法制备聚苯乙烯-
b
-聚(4-乙烯基吡啶) (PS-
b
-P4VP)微球时,引入温度/pH双响应的聚丙烯酸-
b
-聚(
N
-异丙基丙烯酰胺) (PAA-
b
-PNIPAM)作为表面活性剂,通过调控实验温度以及水相的pH值,实现了PS-
b
-P4VP微球在蚕蛹状、草莓状、洋葱状等形貌之间的转变. 这种独特的形貌转变依赖于温度/pH调控的PAA-
b
-PNIPAM的亲疏水性转变,以及由此导致的表面活性剂在界面分布位置的改变,进而改变了油水界面的界面选择性以及微球的形貌. 通过改变PAA-
b
-PNIPAM的质量分数、PAA和PNIPAM的嵌段比,系统地研究了温度/pH对PS-
b
-P4VP微球形貌转变机制的影响. 提供了一种温度/pH双响应的微球形貌转变的策略,有望在药物释放、智能传感等领域发挥重要作用.
The preparation of block copolymer microparticles that change morphology in response to multiple external stimuli is of great significance for the development of new smart materials. This work proposes a new strategy to control the morphology transition of block copolymer microparticles by taking advantage of temperature/pH dual-responsive polymeric co-surfactant
poly(acrylic acid)-
b
-poly(
N
-isopropylacrylamide) (PAA-
b
-PNIPAM). The transformation of polystyrene-
b
-poly(4-vinylpyridine) (PS-
b
-P4VP) microparticles among pupa-like particles
strawberry-like particles
and onion-like particles could be realized by tuning the volatilization temperature and the pH value of the aqueous phase. This morphological transformation depended on the hydrophilic and hydrophobic transformation of PAA-
b
-PNIPAM regulated by temperature/pH
which changed the distribution of co-surfactant at the interface
resulting in the change of the interface selectivity of oil/water interface and the morphology of the microparticles. Moreover
the effects of temperature/pH on the morphology transition mechanism of PS-
b
-P4VP microparticles were systematically studied by means of changing the mass fraction of PAA-
b
-PNIPAM and the block ratio of PAA to PNIPAM. This work provides a new way for shaping the microparticle morphology of inert block copolymers
via
the introduction of temperature/pH dual-responsive co-surfactant. Such dual-responsive microparticles are expected to be used in drug release
smart delivery
and other areas.
嵌段共聚物受限组装聚合物微球刺激响应性形貌转变
Block copolymersConfined assemblyPolymeric microparticlesStimuli-responsivenessMorphological transformation
扈登文, 张梦梦, 许江平, 朱锦涛. 嵌段共聚物微球结构设计与功能调控. 高分子学报, 2023, 54(6), 818-836. doi:10.11777/j.issn1000-3304.2022.22455http://dx.doi.org/10.11777/j.issn1000-3304.2022.22455
Lee D.; Kim J.; Ku K. H.; Li S.; Shin J. J.; Kim B. J. Poly(vinylpyridine)-containing block copolymers for smart, multicompartment particles. Polym. Chem., 2022, 13(18), 2570-2588. doi:10.1039/d2py00150khttp://dx.doi.org/10.1039/d2py00150k
张艳, 刘雪杰, 闫南, 胡跃鑫, 李海英, 朱雨田. 嵌段共聚物三维软受限自组装. 化学进展, 2018, 30(2/3), 166-178.
Kawano S.; Lie J.; Ohgi R.; Shizuma M.; Muraoka M. Modulating polymeric amphiphiles using thermo- and pH-responsive copolymers with cyclodextrin pendant groups through molecular recognition of the lipophilic dye. Macromolecules, 2021, 54(11), 5229-5240. doi:10.1021/acs.macromol.1c00265http://dx.doi.org/10.1021/acs.macromol.1c00265
Tanaka J.; Moriceau G.; Cook A.; Kerr A.; Zhang J. L.; Peltier R.; Perrier S.; Davis T. P.; Wilson P. Tuning the structure, stability, and responsivity of polymeric arsenical nanoparticles using polythiol cross-linkers. Macromolecules, 2019, 52(3), 992-1003. doi:10.1021/acs.macromol.8b02459http://dx.doi.org/10.1021/acs.macromol.8b02459
Zhang M. M.; Hou Z. Y.; Wang H. Y.; Zhang L. B.; Xu J. P.; Zhu J. T. Shaping block copolymer microparticles by pH-responsive core-cross-linked polymeric nanoparticles. Langmuir, 2021, 37(1), 454-460. doi:10.1021/acs.langmuir.0c03099http://dx.doi.org/10.1021/acs.langmuir.0c03099
Lee J.; Ku K. H.; Kim J.; Lee Y. J.; Jang S. G.; Kim B. J. Light-responsive, shape-switchable block copolymer particles. J. Am. Chem. Soc., 2019, 141(38), 15348-15355. doi:10.1021/jacs.9b07755http://dx.doi.org/10.1021/jacs.9b07755
Zhang M. M.; Ren M.; Zhang Y. P.; Hou Z. Y.; Liu S. M.; Zhang L. B.; Xu J. P.; Zhu J. T. Shaping block copolymer microparticles by positively charged polymeric nanoparticles. Macromol. Rapid Commun., 2022, 43(18), 2200143. doi:10.1002/marc.202200143http://dx.doi.org/10.1002/marc.202200143
Hu D. W.; Chang X. H.; Xu Y. Q.; Yu Q. L.; Zhu Y. T. Light-enabled reversible shape transformation of block copolymer particles. ACS Macro Lett., 2021, 10(7), 914-920. doi:10.1021/acsmacrolett.1c00356http://dx.doi.org/10.1021/acsmacrolett.1c00356
Takagai Y.; Nojiri Y.; Takase T.; Hinze W. L.; Butsugan M.; Igarashi S. "Turn-on" fluorescent polymeric microparticle sensors for the determination of ammonia and amines in the vapor state. Analyst, 2010, 135(6), 1417-1425. doi:10.1039/b922842jhttp://dx.doi.org/10.1039/b922842j
He Q. L.; Ku K. H.; Vijayamohanan H.; Kim B. J.; Swager T. M. Switchable full-color reflective photonic ellipsoidal particles. J. Am. Chem. Soc., 2020, 142(23), 10424-10430. doi:10.1021/jacs.0c02398http://dx.doi.org/10.1021/jacs.0c02398
张连斌, 王珂, 朱锦涛. 中国嵌段共聚物受限自组装的研究进展. 高分子学报, 2017, (8), 1261-1276. doi:10.11777/j.issn1000-3304.2017.17126http://dx.doi.org/10.11777/j.issn1000-3304.2017.17126
李玉莲, 宋东坡, 李悦生. 三嵌段共聚物刷诱导乳液自组装制备响应性多孔结构色微球. 高分子学报, 2021, 52(12), 1591-1602. doi:10.11777/j.issn1000-3304.2021.21146http://dx.doi.org/10.11777/j.issn1000-3304.2021.21146
Xu J. P.; Zhu J. T. Block copolymer colloidal particles with unique structures through three-dimensional confined assembly and disassembly. Chinese J. Polym. Sci., 2019, 37(8), 744-759. doi:10.1007/s10118-019-2294-0http://dx.doi.org/10.1007/s10118-019-2294-0
Liu J. Y.; Song H. R.; Wang M.; Jin S. H.; Liang Z.; Mao X.; Li W.; Deng R. H.; Zhu J. T. Asymmetric mesoporous carbon microparticles by 3D-confined self-assembly of block copolymer/homopolymer blends and selective carbonization. Chinese J. Polym. Sci., 2023, 41(5), 787-793. doi:10.1007/s10118-023-2935-1http://dx.doi.org/10.1007/s10118-023-2935-1
Cao Y. Y.; Yang S. B.; Li Y. S.; Shi J. L. Cooperative organizations of small molecular surfactants and amphiphilic block copolymers: roles of surfactants in the formation of binary co-assemblies. Aggregate, 2021, 2(6), e49-e69. doi:10.1002/agt2.49http://dx.doi.org/10.1002/agt2.49
Hou Z. Y.; Ren M.; Wang K.; Yang Y.; Xu J. P.; Zhu J. T. Deformable block copolymer microparticles by controllable localization of pH-responsive nanoparticles. Macromolecules, 2020, 53(1), 473-481. doi:10.1021/acs.macromol.9b01936http://dx.doi.org/10.1021/acs.macromol.9b01936
Xu J. P.; Wang K.; Li J. Y.; Zhou H. M.; Xie X. L.; Zhu J. T. ABC triblock copolymer particles with tunable shape and internal structure through 3D confined assembly. Macromolecules, 2015, 48(8), 2628-2636. doi:10.1021/acs.macromol.5b00335http://dx.doi.org/10.1021/acs.macromol.5b00335
Jeon S. J.; Yi G. R.; Yang S. M. Cooperative assembly of block copolymers with deformable interfaces: toward nanostructured particles. Adv. Mater., 2008, 20(21), 4103-4108. doi:10.1002/adma.200801377http://dx.doi.org/10.1002/adma.200801377
Cui T. T.; Li X. Y.; Dong B.; Li X.; Guo M. X.; Wu L. X.; Li B. H.; Li H. L. Janus onions of block copolymers via confined self-assembly. Polymer, 2019, 174, 70-76. doi:10.1016/j.polymer.2019.04.062http://dx.doi.org/10.1016/j.polymer.2019.04.062
Wu Y. Q.; Wang K.; Tan H. Y.; Xu J. P.; Zhu J. T. Emulsion solvent evaporation-induced self-assembly of block copolymers containing pH-sensitive block. Langmuir, 2017, 33(38), 9889-9896. doi:10.1021/acs.langmuir.7b02330http://dx.doi.org/10.1021/acs.langmuir.7b02330
Wang Y. P.; Hu D. W.; Chang X. H.; Zhu Y. T. Temperature-driven reversible shape transformation of polymeric nanoparticles from emulsion confined coassembly of block copolymers and poly(N-isopropylacrylamide). Macromolecules, 2022, 55(14), 6211-6219. doi:10.1021/acs.macromol.2c00893http://dx.doi.org/10.1021/acs.macromol.2c00893
Lee J.; Ku K. H.; Kim M.; Shin J. M.; Han J.; Park C. H.; Yi G. R.; Jang S. G.; Kim B. J. Stimuli-responsive, shape-transforming nanostructured particles. Adv. Mater., 2017, 29(29), 1700608. doi:10.1002/adma.201700608http://dx.doi.org/10.1002/adma.201700608
Lee J.; Ku K. H.; Park C. H.; Lee Y. J.; Yun H.; Kim B. J. Shape and color switchable block copolymer particles by temperature and pH dual responses. ACS Nano, 2019, 13(4), 4230-4237. doi:10.1021/acsnano.8b09276http://dx.doi.org/10.1021/acsnano.8b09276
Hu D. W.; Chang X. H.; Zhu Y. T. Engineering the morphologies of block copolymer particles from the confined self-assembly within emulsion droplets. Chinese J. Chem., 2023, 41(2), 237-245. doi:10.1002/cjoc.202200547http://dx.doi.org/10.1002/cjoc.202200547
Lv C.; Zhang Z. J.; Gao J. A.; Xue J. Q.; Li J. Y.; Nie J. J.; Xu J. T.; Du B. Y. Self-assembly of thermosensitive amphiphilic pentablock terpolymer PNIPAMx-b-PtBA90-b-PPO36-b-PtBA90-b-PNIPAMx in dilute aqueous solution. Macromolecules, 2018, 51(24), 10136-10149. doi:10.1021/acs.macromol.8b01933http://dx.doi.org/10.1021/acs.macromol.8b01933
Lin Z. F.; Cao S. Q.; Chen X. Y.; Wu W.; Li J. S. Thermoresponsive hydrogels from phosphorylated ABA triblock copolymers: a potential scaffold for bone tissue engineering. Biomacromolecules, 2013, 14(7), 2206-2214. doi:10.1021/bm4003442http://dx.doi.org/10.1021/bm4003442
Zhang M. M.; Wang H. Y.; Hou Z. Y.; Chen Q. A.; Xie Z. J.; Zhu J. T.; Xu J. P.; Zhang L. B. Light-responsive bilayered hydrogel for freshwater production from surface soil moisture. EcoMat, 2021, 3(6), e12144-e12155. doi:10.1002/eom2.12144http://dx.doi.org/10.1002/eom2.12144
Pang X. C.; Zhao L.; Akinc M.; Kim J. K.; Lin Z. Q. Novel amphiphilic multi-arm, star-like block copolymers as unimolecular micelles. Macromolecules, 2011, 44(10), 3746-3752. doi:10.1021/ma200594jhttp://dx.doi.org/10.1021/ma200594j
Wang W.; Gao C. Q.; Qu Y. Q.; Song Z. F.; Zhang W. Q. In situ synthesis of thermoresponsive polystyrene-b-poly(N-isopropylacrylamide)-b-polystyrene nanospheres and comparative study of the looped and linear poly(N-isopropylacrylamide)s. Macromolecules, 2016, 49(7), 2772-2781. doi:10.1021/acs.macromol.6b00233http://dx.doi.org/10.1021/acs.macromol.6b00233
Qiu X. P.; Kwan C. M. S.; Wu C. Laser light scattering study of the formation and structure of poly(N-isopropylacrylamide-co-acrylic acid) nanoparticles. Macromolecules, 1997, 30(20), 6090-6094. doi:10.1021/ma970484shttp://dx.doi.org/10.1021/ma970484s
Xu W. N.; Ledin P. A.; Iatridi Z.; Tsitsilianis C.; Tsukruk V. V. Multiresponsive star-graft quarterpolymer monolayers. Macromolecules, 2015, 48(10), 3344-3353. doi:10.1021/acs.macromol.5b00401http://dx.doi.org/10.1021/acs.macromol.5b00401
Nunes S. P.; Behzad A. R.; Hooghan B.; Sougrat R.; Karunakaran M.; Pradeep N.; Vainio U.; Peinemann K. V. Switchable pH-responsive polymeric membranes prepared via block copolymer micelle assembly. ACS Nano, 2011, 5(5), 3516-3522. doi:10.1021/nn200484vhttp://dx.doi.org/10.1021/nn200484v
Yang S. B.; Niu D. C.; Li N.; Gu J. L.; Dai X.; Yang T. G.; Gao X.; Li Y. S.; Shi J. L. Block copolymer nanoparticle replicating strategy towards hierarchically mesoporous structured silica with predictable architectures. Sci. Bull., 2021, 66(3), 197-199. doi:10.1016/j.scib.2020.07.035http://dx.doi.org/10.1016/j.scib.2020.07.035
Yang S. B.; Cao Y. Y.; Wang S. Q.; Li Y. S.; Shi J. L. Understanding on the surfactants engineered morphology evolution of block copolymer particles and their precise mesoporous silica replicas. Chem. Res. Chin. Univ., 2022, 38(1), 99-106. doi:10.1007/s40242-021-1403-0http://dx.doi.org/10.1007/s40242-021-1403-0
0
浏览量
31
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构