浏览全部资源
扫码关注微信
1.天津大学材料科学与工程学院 天津 300350
2.天津大学-新加坡国立大学福州联合学院 天津大学国际校区 福州 350205
E-mail: yanhou.geng@tju.edu.cn
纸质出版日期:2024-01-20,
网络出版日期:2023-09-18,
收稿日期:2023-06-24,
录用日期:2023-07-31
移动端阅览
林琳琳, 张栩文, 石毅博, 邓云峰, 耿延候. 基于3,6-二氯噻吩并[3,2-b]噻吩的共轭聚合物的直接芳基化缩聚合成及其半导体性质. 高分子学报, 2024, 55(1), 36-47
Lin, L. L.; Zhang, X. W.; Shi, Y. B.; Deng, Y. F.; Geng, Y. H. Conjugated polymers based on 3,6-dichlorothieno[3,2-b]thiophene synthesized by direct arylation polycondensation and their semiconductor properties. Acta Polymerica Sinica, 2024, 55(1), 36-47
林琳琳, 张栩文, 石毅博, 邓云峰, 耿延候. 基于3,6-二氯噻吩并[3,2-b]噻吩的共轭聚合物的直接芳基化缩聚合成及其半导体性质. 高分子学报, 2024, 55(1), 36-47 DOI: 10.11777/j.issn1000-3304.2023.23165.
Lin, L. L.; Zhang, X. W.; Shi, Y. B.; Deng, Y. F.; Geng, Y. H. Conjugated polymers based on 3,6-dichlorothieno[3,2-b]thiophene synthesized by direct arylation polycondensation and their semiconductor properties. Acta Polymerica Sinica, 2024, 55(1), 36-47 DOI: 10.11777/j.issn1000-3304.2023.23165.
以
β
位氯代的噻吩衍生物3
6-二氯噻吩并[3
2-
b
]噻吩(2ClTT)为C-H单体、溴代噻吩取代吡咯并吡咯二酮(DPPC14-Br)或溴代异靛蓝(IIDC14-Br)为C-Br单体,采用直接芳基化缩聚(DArP)合成了共轭聚合物DPP-2ClTT和IID-2ClTT. 氯原子的引入可大幅提高并噻吩
α
-C-H键的反应活性,理论计算表明,2ClTT的直接芳基化反应活性与文献报道的高活性氯代联噻吩C-H单体的活性相当. 此外,利用氯原子较强的电负性,可以降低聚合物的前线轨道能级,DPP-2ClTT和IID-2ClTT的HOMO/LUMO能级分别为-5.35/-3.66 eV和-5.88/-3.73 eV. 由于具有合适的HOMO和LUMO能级以及离域的HOMO和LUMO轨道,以DPP-2ClTT为活性层制备的有机薄膜晶体管(OTFT)表现出双极传输特性,最高电子和空穴迁移率分别为1.36和0.89 cm
2
/V/s. IID-2ClTT具有较低的HOMO能级以及较为定域的HOMO轨道,因而该聚合物在OTFT器件中表现出n型传输特性,最高电子迁移率为0.029 cm
2
/V/s. 相比于IID-2ClTT,DPP-2ClTT高的电子迁移率可归因于其好的骨架平面性、有序的分子堆积以及优异的薄膜形貌.
Direct arylation polycondensation (DArP) is an atom-economic and environmentally benign protocol for the synthesis of conjugated polymers. However
this method often suffered from low reactivity and poor selectivity of C-H bonds. In this study
a
β
-chlorinated thiophene derivative
3
6-dichlorothieno[3
2-
b
]thiophene (2ClTT)
was used as the C-H monomer for DArP. The introduction of chlorine atoms at the
β
-positions of thieno[3
2-
b
]thiophene significantly enhances the reactivity of
α
-C-H bonds and evades the unwanted C-H activation. Theoretical calculations revealed that the DArP reactivity of 2ClTT is comparable to that of highly reactive
β
-chlorinated thiophene-based C-H monomers reported in previous literature. Two conjugated polymers
i.e.
DPP-2ClTT and IID-2ClTT
were synthesized by using 2ClTT as the C-H monomer and bromothienyl-flanked diketopyrrolopyrrole (DPPThBr) or brominated isoindigo (IIDBr) as the C-Br monomers. The photophysical and electrochemical properties of these two polymers were investigated. The absorption spectrum of DPP-2ClTT was redshift by ⁓200 nm compared to that of IID-2ClTT. This can be ascribed to the planar backbone of DPP-2ClTT due to the presence of Cl···S intramolecular interactions. Furthermore
the strong electronegativity of chlorine atoms resulted in a reduction of frontier orbital energy levels of the polymers. The HOMO/LUMO energy levels of DPP-2ClTT and IID-2ClTT were -5.35/-3.66 eV and -5.88/-3.73 eV
respectively. The charge transport properties of DPP-2ClTT and IID-2ClTT were characterized by top gate/bottom contact (TG/BC) organic thin-film transistors (OTFTs). Due to the favourable HOMO and LUMO energy levels
as well as the well delocalized HOMO and LUMO orbitals
DPP-2ClTT exhibited ambipolar transport characteristics in OTFT devices with the highest electron and hole mobilities of up to 1.36 and 0.89 cm
2
/V/s
respectively. However
owing to the deep-positioned HOMO energy level and relatively localized HOMO orbitals
IID-2ClTT displayed
n
-type transport characteristics in OTFT devices with the highest electron mobility of 0.029 cm
2
/V/s. The higher electron mobility of DPP-2ClTT
compared to that of IID-2ClTT
can be attributed to its good backbone planarity
highly packing ordered thin-film
and favourable thin-film morphology.
共轭聚合物直接芳基化缩聚噻吩衍生物载流子迁移率有机薄膜晶体管
Conjugated polymerDirect arylation polycondensationThiophene derivativesCharge carrier mobilityOrganic thin-film transistors
黄飞, 薄志山, 耿延候, 王献红, 王利祥, 马於光, 侯剑辉, 胡文平, 裴坚, 董焕丽, 王树, 李振, 帅志刚, 李永舫, 曹镛. 光电高分子材料的研究进展. 高分子学报, 2019, 50(10), 988-1046. doi:10.11777/j.issn1000-3304.2019.19110http://dx.doi.org/10.11777/j.issn1000-3304.2019.19110
Sun C., Wang X., Auwalu M. A., Cheng S., Hu W. Organic thin film transistors-based biosensors. EcoMat., 2021, 3(2), e12094. doi:10.1002/eom2.12094http://dx.doi.org/10.1002/eom2.12094
Kim M., Ryu S. U., Park S. A., Choi K., Kim T., Chung D., Park T. Donor-acceptor-conjugated polymer for high-performance organic field-effect transistors: a progress report. Adv. Funct. Mater., 2020, 30(20), 1904545. doi:10.1002/adfm.201904545http://dx.doi.org/10.1002/adfm.201904545
耿延候, 睢颖. 高迁移率共轭聚合物的直接芳基化缩聚合成. 高分子学报, 2019, 50(2), 109-117. doi:10.11777/j.issn1000-3304.2018.18231http://dx.doi.org/10.11777/j.issn1000-3304.2018.18231
杨杰, 陈金佯, 孙云龙, 施龙献, 郭云龙, 王帅, 刘云圻. 新型共轭聚合物的设计合成及其在场效应晶体管的应用. 高分子学报 2017, 48(7), 1082-1096. doi:10.11777/j.issn1000-3304.2017.17020http://dx.doi.org/10.11777/j.issn1000-3304.2017.17020
郭云龙. 高性能双极性聚合物半导体材料与晶体管器件. 高分子学报, 2020, 51(5), 448-456. doi:10.11777/j.issn1000-3304.2020.19221http://dx.doi.org/10.11777/j.issn1000-3304.2020.19221
邓云峰, 王天佐, 耿晓康. 含醌式结构共轭聚合物的研究进展. 高分子学报, 2023, 54(6), 803-817. doi:10.11777/j.issn1000-3304.2022.22428http://dx.doi.org/10.11777/j.issn1000-3304.2022.22428
马博维, 史钦钦, 黄辉. 共轭高分子的精准合成. 高分子学报, 2023, 54(6), 791-802.
Sui Y., Deng Y., Du T., Shi Y., Geng Y. Design strategies of n-type conjugated polymers for organic thin-film transistors. Mater. Chem. Front., 2019, 3(10), 1932-1951. doi:10.1039/c9qm00382ghttp://dx.doi.org/10.1039/c9qm00382g
Carsten B., He F., Son H. J., Xu T., Yu L. Stille polycondensation for synthesis of functional materials. Chem. Rev., 2011, 111(3), 1493-1528. doi:10.1021/cr100320whttp://dx.doi.org/10.1021/cr100320w
Sakamoto J., Rehahn M., Wegner G., Schlüter A. D. Suzuki polycondensation: polyarylenes à la carte. Macromol. Rapid. Commun., 2009, 30(9-10), 653-687. doi:10.1002/marc.200900063http://dx.doi.org/10.1002/marc.200900063
Pouliot J. R., Grenier F., Blaskovits J. T., Beaupré S., Leclerc M. Direct (hetero)arylation polymerization: simplicity for conjugated polymer synthesis. Chem. Rev., 2016, 116(22), 14225-14274. doi:10.1021/acs.chemrev.6b00498http://dx.doi.org/10.1021/acs.chemrev.6b00498
Morin P. O., Bura T., Leclerc M. Realizing the full potential of conjugated polymers: innovation in polymer synthesis. Mater. Horiz., 2016, 3(1), 11-20. doi:10.1039/c5mh00164ahttp://dx.doi.org/10.1039/c5mh00164a
Gobalasingham N. S., Thompson B. C. Direct arylation polymerization: a guide to optimal conditions for effective conjugated polymers. Prog. Polym. Sci., 2018, 83, 135-201. doi:10.1016/j.progpolymsci.2018.06.002http://dx.doi.org/10.1016/j.progpolymsci.2018.06.002
Wang Q., Lenjani S. V., Dolynchuk O., Scaccabarozzi A. D., Komber H., Guo Y., Günther F., Gemming S., Magerle R., Caironi M., Sommer M. Electron mobility of diketopyrrolopyrrole copolymers is robust against homocoupling defects. Chem. Mater., 2021, 33(2), 668-677. doi:10.1021/acs.chemmater.0c03998http://dx.doi.org/10.1021/acs.chemmater.0c03998
Gorelsky S. I., Lapointe D., Fagnou K. Analysis of the concerted metalation-deprotonation mechanism in palladium-catalyzed direct arylation across a broad range of aromatic substrates. J. Am. Chem. Soc., 2008, 130(33), 10848-10849. doi:10.1021/ja802533uhttp://dx.doi.org/10.1021/ja802533u
Gorelsky S. I. Origins of regioselectivity of the palladium-catalyzed (aromatic)C-H bond metalation-deprotonation. Coord. Chem. Rev., 2013, 257(1), 153-164. doi:10.1016/j.ccr.2012.06.016http://dx.doi.org/10.1016/j.ccr.2012.06.016
Huang H., Yang L., Facchetti A., Marks T. J. Organic and polymeric semiconductors enhanced by noncovalent conformational locks. Chem. Rev., 2017, 117(15), 10291-10318. doi:10.1021/acs.chemrev.7b00084http://dx.doi.org/10.1021/acs.chemrev.7b00084
Gao Y., Deng Y., Tian H., Zhang J., Yan D., Geng Y., Wang F. Multifluorination toward high-mobility ambipolar and unipolar n-type donor-acceptor conjugated polymers based on isoindigo. Adv. Mater., 2017, 29(13), 1606217. doi:10.1002/adma.201606217http://dx.doi.org/10.1002/adma.201606217
Gao Y., Zhang X., Tian H., Zhang J., Yan D., Geng Y., Wang F. High mobility ambipolar diketopyrrolopyrrole-based conjugated polymer synthesized via direct arylation polycondensation. Adv. Mater., 2015, 27(42), 6753-6759. doi:10.1002/adma.201502896http://dx.doi.org/10.1002/adma.201502896
Sui Y., Shi Y., Deng Y., Li R., Bai J., Wang Z., Dang Y., Han Y., Kirby N., Ye L., Geng Y. Direct arylation polycondensation of chlorinated thiophene derivatives to high-mobility conjugated polymers. Macromolecules, 2020, 53(22), 10147-10154. doi:10.1021/acs.macromol.0c02206http://dx.doi.org/10.1021/acs.macromol.0c02206
Gao Y., Bai J., Sui Y., Han Y., Deng Y., Tian H., Geng Y., Wang F. High mobility ambipolar diketopyrrolopyrrole-based conjugated polymers synthesized via direct arylation polycondensation: influence of thiophene moieties and side chains. Macromolecules, 2018, 51(21), 8752-8760. doi:10.1021/acs.macromol.8b01112http://dx.doi.org/10.1021/acs.macromol.8b01112
Guo K., Bai J., Jiang Y., Wang Z., Sui Y., Deng Y., Han Y., Tian H., Geng Y. Diketopyrrolopyrrole-based conjugated polymers synthesized via direct arylation polycondensation for high mobility pure n-channel organic field-effect transistors. Adv. Funct. Mater., 2018, 28(31), 1801097. doi:10.1002/adfm.201801097http://dx.doi.org/10.1002/adfm.201801097
Bai J., Jiang Y., Wang Z., Sui Y., Deng Y., Han Y. Geng, Y. Bar-coated organic thin-film transistors with reliable electron mobility approaching 10 cm2/V/s. Adv. Electron. Mater., 2020, 6(1), 1901002. doi:10.1002/aelm.201901002http://dx.doi.org/10.1002/aelm.201901002
Cai H., Zhang X., Shi Y., Xu C., Wang T., Wang C., Du T., Deng Y., Geng Y. n-Type conjugated polymers comprising bithiophene imide and multifluorinated thiophene moieties synthesized by direct arylation polycondensation. J. Mater. Chem. C, 2022, 10(37), 13905-13912. doi:10.1039/d2tc00732khttp://dx.doi.org/10.1039/d2tc00732k
Sui Y., Wang Z., Bai J., Shi Y., Zhang X., Deng Y., Han Y., Geng Y. Diketopyrrolopyrrole-based conjugated polymers synthesized by direct arylation polycondensation for anisole-processed high mobility organic thin-film transistors. J. Mater. Chem. C, 2022, 10(7), 2616-2622. doi:10.1039/d1tc04207fhttp://dx.doi.org/10.1039/d1tc04207f
Xu C., Wang Z., Dong W., He C., Shi Y., Bai J., Zhang C., Gao M., Jiang H., Deng Y., Ye L., Han Y., Geng Y. Aggregation behavior and electrical performance control of isoindigo-based conjugated polymers via carbosilane side chain engineering. Macromolecules, 2022, 55(23), 10385-10394. doi:10.1021/acs.macromol.2c01770http://dx.doi.org/10.1021/acs.macromol.2c01770
Zhang X., Shi Y., Dang Y., Liang Z., Wang Z., Deng Y., Han Y., Hu W., Geng Y. Direct arylation polycondensation of β-fluorinated bithiophenes to polythiophenes: effect of side chains in C-Br monomers. Macromolecules, 2022, 55(18), 8095-8105. doi:10.1021/acs.macromol.2c01266http://dx.doi.org/10.1021/acs.macromol.2c01266
Yan D. S., Zhang X. W., Wang Z. L., Xu C. H., Shi Y. B., Deng Y. F., Han Y., Geng Y. H. 3-Methylcyclohexanone processed n-channel organic thin-film transistors based on a conjugated polymer synthesized by direct arylation polycondensation. Chinese J. Polym. Sci., 2023, 41(5), 824-831. doi:10.1007/s10118-023-2937-zhttp://dx.doi.org/10.1007/s10118-023-2937-z
Shi L., Guo Y., Hu W., Liu Y. Design and effective synthesis methods for high-performance polymer semiconductors in organic field-effect transistors. Mater. Chem. Front., 2017, 1(12), 2423-2456. doi:10.1039/c7qm00169jhttp://dx.doi.org/10.1039/c7qm00169j
Shi Y., Zhang X., Du T., Han Y., Deng Y., Geng Y. A High-performance n-type thermoelectric polymer from C-H/C-H oxidative direct arylation polycondensation. Angew. Chem. Int. Ed., 2023, 62(20), e202219262. doi:10.1002/anie.202219262http://dx.doi.org/10.1002/anie.202219262
Lei T., Dou J. H., Pei J. Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors. Adv. Mater., 2012, 24(48), 6457-6461. doi:10.1002/adma.201202689http://dx.doi.org/10.1002/adma.201202689
Lin L., Wang C., Deng Y., Geng Y. Isomerically pure oxindole-terminated quinoids for n-type organic thin-film transistors enabled by the chlorination of quinoidal core. Chem. Eur. J., 2023, 29(12), e202203336. doi:10.1002/chem.202203336http://dx.doi.org/10.1002/chem.202203336
Li Y., Singh S. P., Sonar P. A high mobility p-type DPP-thieno[3,2-b] thiophene copolymer for organic thin-film transistors. Adv. Mater. 2010, 22(43), 4862-4866. doi:10.1002/adma.201002313http://dx.doi.org/10.1002/adma.201002313
Kawabata K., Osaka I., Nakano M., Takemura N., Koganezawa T., Takimiya K. Thienothiophene-2,5-dione-based donor-acceptor polymers: improved synthesis and influence of the donor units on ambipolar charge transport properties. Adv. Electron. Mater., 2015, 1(6), 1500039. doi:10.1002/aelm.201500039http://dx.doi.org/10.1002/aelm.201500039
Zaumseil J., Sirringhaus H. Electron and ambipolar transport in organic field-effect transistors. Chem. Rev., 2007, 107(4), 1296-1323. doi:10.1021/cr0501543http://dx.doi.org/10.1021/cr0501543
Zhou Y., Fuentes-Hernandez C., Shim J., Meyer J., Giordano A. J., Li H., Winget P., Papadopoulos T., Cheun H., Kim J., Fenoll M., Dindar A., Haske W., Najafabadi E., Khan T. M., Sojoudi H., Barlow S., Graham S., Brédas J.L., Marder S. R., Kahn A., Kippelen B. A universal method to produce low-work function electrodes for organic electronics. Science, 2012, 336(6079), 327-332. doi:10.1126/science.1218829http://dx.doi.org/10.1126/science.1218829
Chu C. W., Li S. H., Chen C. W., Shrotriya V., Yang Y. High-performance organic thin-film transistors with metal oxide/metal bilayer electrode. Appl. Phys. Lett., 2005, 87(19), 193508. doi:10.1063/1.2126140http://dx.doi.org/10.1063/1.2126140
Kano M., Minari T., Tsukagoshi K., Improvement of subthreshold current transport by contact interface modification in p-type organic field-effect transistors. Appl. Phys. Lett., 2009, 94(14), 143304. doi:10.1063/1.3115826http://dx.doi.org/10.1063/1.3115826
Chio H. H., Cho K., Frisbie C. D., Sirringhaus H., Podzorov V. Critical assessment of charge mobility extraction in FETs. Nat. Mater., 2017, 17(1), 2-7. doi:10.1038/nmat5035http://dx.doi.org/10.1038/nmat5035
Wang X., Tang A., Yang J., Du M., Li J., Li G., Guo Q., Zhou E. Tuning the Intermolecular Interaction of A2-A1-D-A1-A2 Type Non-Fullerene Acceptors by Substituent Engineering for Organic Solar Cells with Ultrahigh Voc of ~1.2 V. Sci. China Chem., 2020, 63(11), 1666-1674. doi:10.1007/s11426-020-9840-xhttp://dx.doi.org/10.1007/s11426-020-9840-x
Dai T., Nie Q., Lei P., Zhang B., Zhou J., Tang A., Wang H., Zeng Q., Zhou E. Effects of halogenation on the benzotriazole unit of non-fullerene acceptors in organic solar cells with high voltages. ACS Appl. Mater. Interfaces, 2021, 13(49), 58994-59005. doi:10.1021/acsami.1c14317http://dx.doi.org/10.1021/acsami.1c14317
0
浏览量
140
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构