浏览全部资源
扫码关注微信
功能高分子材料教育部重点实验室 南开大学化学系 天津 300071
Yang Liu, E-mail: yliu@nankai.edu.cn
纸质出版日期:2024-01-20,
网络出版日期:2023-10-26,
收稿日期:2023-06-25,
录用日期:2023-08-25
移动端阅览
王纯, 肖建, 刘阳. 共递送尿激酶和替格瑞洛的纳米递送系统用于血栓疾病治疗的研究. 高分子学报, 2024, 55(1), 27-35
Wang, C.; Xiao, J.; Liu, Y. Thrombus targeted delivery of urokinase and ticagrelor for thrombosis-related diseases treatment. Acta Polymerica Sinica, 2024, 55(1), 27-35
王纯, 肖建, 刘阳. 共递送尿激酶和替格瑞洛的纳米递送系统用于血栓疾病治疗的研究. 高分子学报, 2024, 55(1), 27-35 DOI: 10.11777/j.issn1000-3304.2023.23167.
Wang, C.; Xiao, J.; Liu, Y. Thrombus targeted delivery of urokinase and ticagrelor for thrombosis-related diseases treatment. Acta Polymerica Sinica, 2024, 55(1), 27-35 DOI: 10.11777/j.issn1000-3304.2023.23167.
设计合成了一种可靶向血栓部位进行共递送尿激酶和替格瑞洛的纳米粒子(PEG-LCN-uPA),其内核为负载抗血小板药物替格瑞洛的可变形液体纳米粒子(LCN),表面为通过缩酮连接臂修饰的溶栓药物尿激酶和具有靶向功能的聚合物链PEG-CREKA. 得益于LCN的高渗透性和缩酮连接臂的氧化应激响应性,该纳米粒子经静脉注射后可在血液循环中保持稳定,经循环到达血栓部位后可高效渗透并累积至血栓部位,并响应氧化应激微环境释放尿激酶和替格瑞洛. 最终,在小鼠颈动脉血栓模型和小鼠尾部血栓模型中,PEG-LCN-uPA均实现了安全有效的溶栓效果,展现了治疗血栓相关疾病的潜力.
Thrombus related diseases seriously threaten human health. A variety of thrombolytic drugs and antiplatelet agents have been used for the treatment of thrombus related diseases. However
the short circulation half-life
narrow therapeutic window and high bleeding risks seriously restrict their therapeutic effects. To achieve safe and effective thrombolytic therapy
we herein developed a kind of novel nanomaterial to codeliver thrombolytic drug urokinase (uPA) and antiplatelet agent ticagrelor for targeted thrombolysis. Based on the liquid core nanoparticles (LCN)
we first loaded ticagrelor in LCN
followed by modification of uPA and poly(ethylene glycol)-Cys-Arg-Glu-Lys-Ala (PEG-CREKA) on the surface with thioketal linker to obtain PEG-LCN-uPA. PEG-LCN-uPA exhibited effective thrombolysis only in high oxidative microenvironment
indicating its potential for thrombolysis without causing bleeding. Furthermore
owing to the thrombus targeting ability of CREKA peptide
PEG-LCN-uPA achieved effective targeting and accumulation at thrombus site after intravenous injection. Moreover
the thioketal linker was used to conjugate LCN and uPA degraded in response to the oxidative microenvironment at thrombus site
resulting in the release of uPA for further thrombolysis. In the meantime
the detachment of PEG-CREKA allowed the release of ticagrelor for antiplatelet therapy. Animal studies indicated that PEG-LCN-uPA exhibited effective thrombolysis in both mice tail thrombus models and carotid arterial thrombosis model without obvious safety issues. The decrease of sCD40L level indicated the effective reduced activation of platelet
which benefits for long-term antithrombus therapy. With these abilities
PEG-LCN-uPA presented its potential as a feasible strategy for thrombosis-related diseases treatment.
纳米材料血栓抗血小板尿激酶氧化应激
NanomaterialsThrombusAntiplateletUrokinaseOxidative stress
Mackman N.; Bergmeier W.; Stouffer G. A.; Weitz J. I. Therapeutic strategies for thrombosis: new targets and approaches. Nat. Rev. Drug Discov., 2020, 19(5), 333-352. doi:10.1038/s41573-020-0061-0http://dx.doi.org/10.1038/s41573-020-0061-0
Powers W. J.; Rabinstein A. A.; Ackerson T.; Adeoye O. M.; Bambakidis N. C.; Becker K.; Biller J.; Brown M.; Demaerschalk B. M.; Hoh B.; Jauch E. C.; Kidwell C. S.; Leslie-Mazwi T. M.; Ovbiagele B.; Scott P. A.; Sheth K. N.; Southerland A. M.; Summers D. V.; Tirschwell D. L.; Council A. H. A. S. 2018 Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American heart association/american stroke association. Stroke, 2018, 49(3), e46-e110. doi:10.1161/str.0000000000000158http://dx.doi.org/10.1161/str.0000000000000158
Wang Y. H.; Ouyang Y. Q.; Liu B. Y.; Ma X. C.; Ding R. Y. Platelet activation and antiplatelet therapy in sepsis: a narrative review. Thromb. Res., 2018, 166, 28-36. doi:10.1016/j.thromres.2018.04.007http://dx.doi.org/10.1016/j.thromres.2018.04.007
Capodanno D.; Dharmashankar K.; Angiolillo D. J. Mechanism of action and clinical development of ticagrelor, a novel platelet ADP P2Y12 receptor antagonist. Expert Rev. Cardiovasc. Ther., 2010, 8(2), 151-158. doi:10.1586/erc.09.172http://dx.doi.org/10.1586/erc.09.172
McFadyen J. D.; Schaff M.; Peter K. Current and future antiplatelet therapies: emphasis on preserving haemostasis. Nat. Rev. Cardiol., 2018, 15(3), 181-191. doi:10.1038/nrcardio.2017.206http://dx.doi.org/10.1038/nrcardio.2017.206
孙瑞, 邱娜莎, 申有青. 高分子抗肿瘤纳米药物的挑战与发展. 高分子学报, 2019, 50(6), 588-601. doi:10.11777/j.issn1000-3304.2019.19005http://dx.doi.org/10.11777/j.issn1000-3304.2019.19005
Liu Q.; Wang C.; Zheng Y. D.; Zhao Y.; Wang Y.; Hao J. L.; Zhao X. Z.; Yi K. K.; Shi L. Q.; Kang C. S.; Liu Y. Virus-like nanoparticle as a co-delivery system to enhance efficacy of CRISPR/Cas9-based cancer immunotherapy. Biomaterials, 2020, 258, 120275. doi:10.1016/j.biomaterials.2020.120275http://dx.doi.org/10.1016/j.biomaterials.2020.120275
Zheng Y. D.; Zhang Z. Z.; Liu Q.; Zhao Y.; Zheng C. X.; Hao J. L.; Yi K. K.; Wang Y.; Wang C.; Zhao X. Z.; Shi L. Q.; Kang C. S.; Liu Y. Multifunctional nanomodulators regulate multiple pathways to enhance antitumor immunity. ACS Appl. Bio Mater., 2020, 3(7), 4635-4642. doi:10.1021/acsabm.0c00513http://dx.doi.org/10.1021/acsabm.0c00513
Wang C.; Liu Q.; Zhang Z. Z.; Wang Y.; Zheng Y. D.; Hao J. L.; Zhao X. Z.; Liu Y.; Shi L. Q. Tumor targeted delivery of siRNA by a nano-scale quaternary polyplex for cancer treatment. Chem. Eng. J., 2021, 425, 130590. doi:10.1016/j.cej.2021.130590http://dx.doi.org/10.1016/j.cej.2021.130590
刘晨晖, 曹京京, 赵宇, 郑春雄, 郑雅丹, 刘琦, 张展展, 刘阳. 低黏附性正电纳米胶囊用于耐药性细菌生物被膜感染治疗. 高分子学报, 2019, 50(3), 300-310. doi:10.11777/j.issn1000-3304.2019.18220http://dx.doi.org/10.11777/j.issn1000-3304.2019.18220
Wang Y. S.; Li G. L.; Zhu S. B.; Jing F. C.; Liu R. D.; Li S. S.; He J.; Lei J. D. A self-assembled nanoparticle platform based on amphiphilic oleanolic acid polyprodrug for cancer therapy. Chinese J. Polym. Sci., 2020, 38(8), 819-829. doi:10.1007/s10118-020-2401-2http://dx.doi.org/10.1007/s10118-020-2401-2
Greineder C. F.; Howard M. D.; Carnemolla R.; Cines D. B.; Muzykantov V. R. Advanced drug delivery systems for antithrombotic agents. Blood, 2013, 122(9), 1565-1575. doi:10.1182/blood-2013-03-453498http://dx.doi.org/10.1182/blood-2013-03-453498
Song Y. N.; Huang Z. Y.; Xu J. F.; Ren D. Y.; Wang Y.; Zheng X. D.; Shen Y. L.; Wang L. L.; Gao H. X.; Hou J. Y.; Pang Z. Q.; Qian J. Y.; Ge J. B. Multimodal SPION-CREKA peptide based agents for molecular imaging of microthrombus in a rat myocardial ischemia-reperfusion model. Biomaterials, 2014, 35(9), 2961-2970. doi:10.1016/j.biomaterials.2013.12.038http://dx.doi.org/10.1016/j.biomaterials.2013.12.038
Freedman J. E. Oxidative stress and platelets. Arterioscler. Thromb. Vasc. Biol., 2008, 28(3), s11-s16. doi:10.1161/atvbaha.107.159178http://dx.doi.org/10.1161/atvbaha.107.159178
Qiao J. L.; Arthur J. F.; Gardiner E. E.; Andrews R. K.; Zeng L. Y.; Xu K. L. Regulation of platelet activation and thrombus formation by reactive oxygen species. Redox Biol., 2018, 14, 126-130. doi:10.1016/j.redox.2017.08.021http://dx.doi.org/10.1016/j.redox.2017.08.021
Wang C.; Xiao J.; Hu X. Y.; Liu Q.; Zheng Y. D.; Kang Z. Y.; Guo D. S.; Shi L. Q.; Liu Y. Liquid core nanoparticle with high deformability enables efficient penetration across biological barriers. Adv. Healthcare Mater., 2023, 12(5), 2201889. doi:10.1002/adhm.202201889http://dx.doi.org/10.1002/adhm.202201889
Deng Q. Q.; Zhang L.; Lv W.; Liu X. M.; Ren J. S.; Qu X. G. Biological mediator-propelled nanosweeper for nonpharmaceutical thrombus therapy. ACS Nano, 2021, 15(4), 6604-6613. doi:10.1021/acsnano.0c09939http://dx.doi.org/10.1021/acsnano.0c09939
Pan Q. Q.; Deng X.; Gao W. X.; Chang J.; Pu Y. J.; He B. ROS triggered cleavage of thioketal moiety to dissociate prodrug nanoparticles for chemotherapy. Colloids Surf. B Biointerfaces, 2020, 194, 111223. doi:10.1016/j.colsurfb.2020.111223http://dx.doi.org/10.1016/j.colsurfb.2020.111223
0
浏览量
224
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构