浏览全部资源
扫码关注微信
1.天津工业大学,材料科学与工程学院,天津市肝胆疾病研究所 天津市重症疾病体外生命支持重点实验室 天津 300170
2.天津工业大学,药学院,天津市肝胆疾病研究所 天津市重症疾病体外生命支持重点实验室 天津 300170
3.(天津工业大学,化学学院 天津 300387) (,天津市肝胆疾病研究所 天津市重症疾病体外生命支持重点实验室 天津 300170)
4.天津工业大学,天津市第三中心医院,天津市肝胆疾病研究所 天津市重症疾病体外生命支持重点实验室 天津 300170
E-mail: zoulei@tiangong.edu.cn;
E-mail: zhangyj@tiangong.edu.cn;
纸质出版日期:2024-01-20,
网络出版日期:2023-11-21,
收稿日期:2023-07-20,
录用日期:2023-08-25
移动端阅览
张鹏亮, 张莹莹, 李新桐, 任家骏, 邹磊, 赵琢, 高偲嘉, 王亚斐, 张岩, 骆莹, 张拥军. 基于葫芦[8]脲主客体化学的双客体组分动态交联水凝胶的制备和性能研究. 高分子学报, 2024, 55(1), 79-90
Zhang, P. L.; Zhang, Y. Y.; Li, X. T.; Ren, J. J.; Zou, L.; Zhao, Z.; Gao, S. J.; Wang, Y. F.; Zhang, Y.; Luo, Y.; Zhang, Y. J. Synthesis and properties of dynamic hydrogels based on host-guest chemistry of cucurbit[8]uril and its two different homodimer guests. Acta Polymerica Sinica, 2024, 55(1), 79-90
张鹏亮, 张莹莹, 李新桐, 任家骏, 邹磊, 赵琢, 高偲嘉, 王亚斐, 张岩, 骆莹, 张拥军. 基于葫芦[8]脲主客体化学的双客体组分动态交联水凝胶的制备和性能研究. 高分子学报, 2024, 55(1), 79-90 DOI: 10.11777/j.issn1000-3304.2023.23168.
Zhang, P. L.; Zhang, Y. Y.; Li, X. T.; Ren, J. J.; Zou, L.; Zhao, Z.; Gao, S. J.; Wang, Y. F.; Zhang, Y.; Luo, Y.; Zhang, Y. J. Synthesis and properties of dynamic hydrogels based on host-guest chemistry of cucurbit[8]uril and its two different homodimer guests. Acta Polymerica Sinica, 2024, 55(1), 79-90 DOI: 10.11777/j.issn1000-3304.2023.23168.
基于超分子主客体作用的动态交联在构筑用于生物大分子和细胞载体的可注射水凝胶输送材料方面具备很多优势,但单一性质交联点的动态快慢程度固定,无法进行调节,难以实现水凝胶动态可调的性能. 本研究利用葫芦[8]脲(CB[8])能够与它的客体分子以摩尔比为1/2的比例形成同种三元复合物主客体的相互作用,设计了一种双组分超分子动态交联水凝胶系统. 在水凝胶聚合物骨架的侧链上同时引入偶氮苯与苯基吡啶盐2种客体基团,其中偶氮苯客体与CB[8]的结合较弱,呈现较快的动态可逆性质;苯基吡啶盐客体与CB[8]的结合较强,呈现较慢的动态可逆性质. 设计不同比例的2种动态交联,得到了系列网络结构相同,但交联点性质动态可调的水凝胶材料. 水凝胶性能研究结果显示,得到的材料能够在流变学机械性能、自修复、剪切变稀、应力松弛、大分子药物释放等生物医用关键性质上随客体比例变化而进行调控,具备良好的应用前景.
Dynamic crosslinking based on host-guest interaction has shown a number of advantages in constructing injectable hydrogel to be used for biomacromolecules and cell delivery materials. However
it is difficult to dynamically adjust the performance of the hydrogel with only one kind of crosslinking point presented in the structure of the hydrogel. In this study
a two-component supramolecular dynamic cross-linking hydrogel system was designed
employing the host-guest interaction between cucurbit[8]uril (CB[8]) and its homodimer guests to form ternary complex at a ratio of 1/2. The azobenzene guest residues and the phenyl pyridinium guest motifs were introduced into the side chain of hydrogel backbone polymer
in which the azobenzene guest would weakly bind with CB[8] showing faster dynamics
and the phenyl pyridinium salt guest would tightly bind with CB[8] showing slower dynamics. A series of hydrogel materials with the same network structure but dynamically adjustable properties were prepared by adjusting the proportions of these two dynamic cross-linking points. The obtained hydrogel materials could continuously change their properties such as rheology mechanical properties
self-healing
shear thinning
stress relaxation behavior
and macromolecular drug release
all of which are essential in biomedical fields and thus showed great potential in relevant applications.
葫芦[8]脲水凝胶主客体化学动态交联
Cucurbit[8]urilHydrogelHost-guest chemistryDynamic cross-linking
Webber M. J.; Langer R. Drug delivery by supramolecular design. Chem. Soc. Rev., 2017, 46(21), 6600-6620. doi:10.1039/c7cs00391ahttp://dx.doi.org/10.1039/c7cs00391a
Correa S.; Grosskopf A. K.; Lopez Hernandez H.; Chan D.; Yu A. C.; Stapleton L. M.; Appel E. A. Translational applications of hydrogels. Chem. Rev., 2021, 121(18), 11385-11457. doi:10.1021/acs.chemrev.0c01177http://dx.doi.org/10.1021/acs.chemrev.0c01177
Fan H. L.; Gong J. P. Fabrication of bioinspired hydrogels: challenges and opportunities. Macromolecules, 2020, 53(8), 2769-2782. doi:10.1021/acs.macromol.0c00238http://dx.doi.org/10.1021/acs.macromol.0c00238
Zhang K. Y.; Feng Q.; Fang Z. W.; Gu L.; Bian L. M. Structurally dynamic hydrogels for biomedical applications: pursuing a fine balance between macroscopic stability and microscopic dynamics. Chem. Rev., 2021, 121(18), 11149-11193. doi:10.1021/acs.chemrev.1c00071http://dx.doi.org/10.1021/acs.chemrev.1c00071
Webber M. J.; Tibbitt M. W. Dynamic and reconfigurable materials from reversible network interactions. Nat. Rev. Mater., 2022, 7(7), 541-556. doi:10.1038/s41578-021-00412-xhttp://dx.doi.org/10.1038/s41578-021-00412-x
Yang X. F.; Liu G. Q.; Peng L. A.; Guo J. H.; Tao L.; Yuan J. Y.; Chang C. Y.; Wei Y.; Zhang L. N. Highly efficient self-healable and dual responsive cellulose-based hydrogels for controlled release and 3D cell culture. Adv. Funct. Mater., 2017, 27(40), 1703174. doi:10.1002/adfm.201703174http://dx.doi.org/10.1002/adfm.201703174
Yesilyurt V.; Ayoob A. M.; Appel E. A.; Borenstein J. T.; Langer R.; Anderson D. G. Mixed reversible covalent crosslink kinetics enable precise, hierarchical mechanical tuning of hydrogel networks. Adv. Mater., 2017, 29(19), 1605947. doi:10.1002/adma.201605947http://dx.doi.org/10.1002/adma.201605947
Yesilyurt V.; Webber M. J.; Appel E. A.; Godwin C.; Langer R.; Anderson D. G. Injectable self-healing glucose-responsive hydrogels with pH-regulated mechanical properties. Adv. Mater., 2016, 28(1), 86-91. doi:10.1002/adma.201502902http://dx.doi.org/10.1002/adma.201502902
Sun Y. N.; Gao G. R.; Du G. L.; Cheng Y. J.; Fu J. Super tough, ultrastretchable, and thermoresponsive hydrogels with functionalized triblock copolymer micelles as macro-cross-linkers. ACS Macro Lett., 2014, 3(5), 496-500. doi:10.1021/mz500221jhttp://dx.doi.org/10.1021/mz500221j
Wang P.; Deng G. H.; Zhou L. Y.; Li Z. Y.; Chen Y. M. Ultrastretchable, self-healable hydrogels based on dynamic covalent bonding and triblock copolymer micellization. ACS Macro Lett., 2017, 6(8), 881-886. doi:10.1021/acsmacrolett.7b00519http://dx.doi.org/10.1021/acsmacrolett.7b00519
Chen D. Y.; Zhou X. Y.; Chang L. M.; Wang Y.; Li W. J.; Qin J. L. Hemostatic self-healing hydrogel with excellent biocompatibility composed of polyphosphate-conjugated functional PNIPAM-bearing acylhydrazide. Biomacromolecules, 2021, 22(5), 2272-2283. doi:10.1021/acs.biomac.1c00349http://dx.doi.org/10.1021/acs.biomac.1c00349
Liu Z. J.; Ye L.; Xi J. N.; Wang J.; Feng Z. G. Cyclodextrin polymers: structure, synthesis, and use as drug carriers. Prog. Polym. Sci., 2021, 118, 101408. doi:10.1016/j.progpolymsci.2021.101408http://dx.doi.org/10.1016/j.progpolymsci.2021.101408
Kretschmann O.; Choi S. W.; Miyauchi M.; Tomatsu I.; Harada A.; Ritter H. Switchable hydrogels obtained by supramolecular cross-linking of adamantyl-containing LCST copolymers with cyclodextrin dimers. Angew. Chem. Int. Ed., 2006, 45(26), 4361-4365. doi:10.1002/anie.200504539http://dx.doi.org/10.1002/anie.200504539
Liu G. T.; Yuan Q. J.; Hollett G.; Zhao W.; Kang Y.; Wu J. Cyclodextrin-based host-guest supramolecular hydrogel and its application in biomedical fields. Polym. Chem., 2018, 9(25), 3436-3449. doi:10.1039/c8py00730fhttp://dx.doi.org/10.1039/c8py00730f
van de Manakker F.; van der Pot M.; Vermonden T.; van Nostrum C. F.; Hennink W. E. Self-assembling hydrogels based on β-cyclodextrin/cholesterol inclusion complexes. Macromolecules, 2008, 41(5), 1766-1773. doi:10.1021/ma702607rhttp://dx.doi.org/10.1021/ma702607r
董运红, 曹利平. 葫芦脲大环官能团功能化. 化学进展, 2016, 28(7), 1039-1053. doi:10.7536/PC160320http://dx.doi.org/10.7536/PC160320
张宁强, 黄晓玲, 班琳哲, 苏海全. 葫芦[n]脲应用研究进展. 化学进展, 2015, 27(2-3), 192-211.
杨辉, 谭业邦, 黄晓玲, 王月霞. 葫芦脲的研究进展. 化学进展, 2009, 21(1), 164-173.
樊煜, 林沨, 徐晓娜, 徐甲强, 赵新. 基于葫芦脲[8]包结增强供体-受体作用构筑"刚-柔"型超分子共聚物. 高分子学报, 2017, (1), 80-85. doi:10.11777/j.issn1000-3004.2017.16242http://dx.doi.org/10.11777/j.issn1000-3004.2017.16242
Assaf, K. I.; Nau, W. M. Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem. Soc. Rev., 2015, 44(2), 394-418. doi:10.1039/c4cs00273chttp://dx.doi.org/10.1039/c4cs00273c
Barrow S. J.; Kasera S.; Rowland M. J.; del Barrio J.; Scherman O. A. Cucurbituril-based molecular recognition. Chem. Rev., 2015, 115(22), 12320-12406. doi:10.1021/acs.chemrev.5b00341http://dx.doi.org/10.1021/acs.chemrev.5b00341
Liu W. Q.; Samanta S. K.; Smith B. D.; Isaacs L. Synthetic mimics of biotin/(strept)avidin. Chem. Soc. Rev., 2017, 46(9), 2391-2403. doi:10.1039/c7cs00011ahttp://dx.doi.org/10.1039/c7cs00011a
Yang X. R.; Liu F. B.; Zhao Z. Y.; Liang F.; Zhang H. J.; Liu S. M. Cucurbit[10]chemistryuril-based. Chin. Chem. Lett., 2018, 29(11), 1560-1566. doi:10.1016/j.cclet.2018.01.032http://dx.doi.org/10.1016/j.cclet.2018.01.032
Cheng X. J.; Liang L. L.; Chen K.; Ji N. N.; Xiao X.; Zhang J. X.; Zhang Y. Q.; Xue S. F.; Zhu Q. J.; Ni X. L.; Tao Z. Twisted cucurbit[14]uril. Angew. Chem. Int. Ed., 2013, 52(28), 7252-7255. doi:10.1002/anie.201210267http://dx.doi.org/10.1002/anie.201210267
Isaacs, L. Cucurbit[n]urils: from mechanism to structure and function. Chem. Commun., 2009, (6), 619-629. doi:10.1039/b814897jhttp://dx.doi.org/10.1039/b814897j
Lagona J.; Mukhopadhyay P.; Chakrabarti S.; Isaacs L. The cucurbit[n]familyuril. Angew. Chem. Int. Ed., 2005, 44(31), 4844-4870. doi:10.1002/anie.200460675http://dx.doi.org/10.1002/anie.200460675
Wang Z. Y.; Shui M. J.; Wyman I. W.; Zhang Q. W.; Wang R. B. Cucurbit[8]uril-based supramolecular hydrogels for biomedical applications. RSC Med. Chem., 2021, 12(5), 722-729. doi:10.1039/d1md00019ehttp://dx.doi.org/10.1039/d1md00019e
Zou H. A.; Liu J.; Li Y.; Li X. Y.; Wang X. A. Cucurbit[8]uril-based polymers and polymer materials. Small, 2018, 14(46), 1802234. doi:10.1002/smll.201802234http://dx.doi.org/10.1002/smll.201802234
Appel E. A.; Biedermann F.; Rauwald U.; Jones S. T.; Zayed J. M.; Scherman O. A. Supramolecular cross-linked networks via host-guest complexation with cucurbit[8]uril. J. Am. Chem. Soc., 2010, 132(40), 14251-14260. doi:10.1021/ja106362whttp://dx.doi.org/10.1021/ja106362w
Appel E. A.; Loh X. J.; Jones S. T.; Biedermann F.; Dreiss C. A.; Scherman O. A. Ultrahigh-water-content supramolecular hydrogels exhibiting multistimuli responsiveness. J. Am. Chem. Soc., 2012, 134(28), 11767-11773. doi:10.1021/ja3044568http://dx.doi.org/10.1021/ja3044568
Xu W. W.; Song Q. A.; Xu J. F.; Serpe M. J.; Zhang X. Supramolecular hydrogels fabricated from supramonomers: a novel wound dressing material. ACS Appl. Mater. Interfaces, 2017, 9(13), 11368-11372. doi:10.1021/acsami.7b02850http://dx.doi.org/10.1021/acsami.7b02850
Zou L.; Su B.; Addonizio C. J.; Pramudya I.; Webber M. J. Temperature-responsive supramolecular hydrogels by ternary complex formation with subsequent photo-cross-linking to alter network dynamics. Biomacromolecules, 2019, 20(12), 4512-4521. doi:10.1021/acs.biomac.9b01267http://dx.doi.org/10.1021/acs.biomac.9b01267
Zou L.; Addonizio C. J.; Su B.; Sis M. J.; Braegelman A. S.; Liu D. P.; Webber M. J. Supramolecular hydrogels via light-responsive homoternary cross-links. Biomacromolecules, 2021, 22(1), 171-182. doi:10.1021/acs.biomac.0c00950http://dx.doi.org/10.1021/acs.biomac.0c00950
Zou L.; Webber M. J. Reversible hydrogel dynamics by physical-chemical crosslink photoswitching using a supramolecular macrocycle template. Chem. Commun., 2019, 55(67), 9931-9934. doi:10.1039/c9cc04748dhttp://dx.doi.org/10.1039/c9cc04748d
Rodell C. B.; Kaminski A. L.; Burdick J. A. Rational design of network properties in guest-host assembled and shear-thinning hyaluronic acid hydrogels. Biomacromolecules, 2013, 14(11), 4125-4134. doi:10.1021/bm401280zhttp://dx.doi.org/10.1021/bm401280z
Zou L.; Braegelman A. S.; Webber M. J. Dynamic supramolecular hydrogels spanning an unprecedented range of host-guest affinity. ACS Appl. Mater. Interfaces, 2019, 11(6), 5695-5700. doi:10.1021/acsami.8b22151http://dx.doi.org/10.1021/acsami.8b22151
Dou X. Y.; Wang H. F.; Yang F.; Shen H.; Wang X.; Wu D. C. One-step soaking strategy toward anti-swelling hydrogels with a stiff armor. Adv. Sci., 2023, 10(9), e2206242. doi:10.1002/advs.202206242http://dx.doi.org/10.1002/advs.202206242
Gong J. P. Why are double network hydrogels so tough? Soft Matter, 2010, 6(12), 2583-2590. doi:10.1039/b924290bhttp://dx.doi.org/10.1039/b924290b
Haque M. A.; Kurokawa T.; Gong J. P. Super tough double network hydrogels and their application as biomaterials. Polymer, 2012, 53(9), 1805-1822. doi:10.1016/j.polymer.2012.03.013http://dx.doi.org/10.1016/j.polymer.2012.03.013
Zhang J.; Hou S. Z.; Chen Y. R.; Zhou J.; Chen H.; Tan Y. B. Dual-cross-linked dynamic hydrogels with cucurbit[8]uril and imine linkages. Soft Matter, 2019, 15(47), 9797-9804. doi:10.1039/c9sm01597chttp://dx.doi.org/10.1039/c9sm01597c
Kitamura Y.; Sako S.; Udzu T.; Tsutsui A.; Maegawa T.; Monguchi Y.; Sajiki H. Ligand-free Pd/C-catalyzed Suzuki-Miyaura coupling reaction for the synthesis of heterobiaryl derivatives. Chem. Commun., 2007, (47), 5069-5071. doi:10.1039/b712207ahttp://dx.doi.org/10.1039/b712207a
Chaudhuri O.; Gu L.; Klumpers D.; Darnell M.; Bencherif S. A.; Weaver J. C.; Huebsch N.; Lee H. P.; Lippens E.; Duda G. N.; Mooney D. J. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater., 2016, 15(3), 326-334. doi:10.1038/nmat4489http://dx.doi.org/10.1038/nmat4489
Lou J. Z.; Friedowitz S.; Will K.; Qin J. A.; Xia Y. Predictably engineering the viscoelastic behavior of dynamic hydrogels via correlation with molecular parameters. Adv. Mater., 2021, 33(51), 2104460. doi:10.1002/adma.202104460http://dx.doi.org/10.1002/adma.202104460
0
浏览量
163
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构