浏览全部资源
扫码关注微信
中国科学院长春应用化学研究所 生态环境高分子材料重点实验室 长春 130022
[ "肖春生,男,1985年生. 2006年毕业于中国科学技术大学,获得学士学位. 2012年毕业于中国科学院长春应用化学研究所,获得博士学位. 2012年至今,在中国科学院长春应用化学研究所工作,历任助理研究员、副研究员和研究员. 2022年获得国家自然科学基金委优秀青年科学基金项目资助,主要从事生物医用高分子材料的制备及其在肿瘤、细菌感染和炎症性疾病治疗等领域的应用研究." ]
纸质出版日期:2024-01-20,
网络出版日期:2023-11-21,
收稿日期:2023-06-25,
录用日期:2023-09-13
移动端阅览
王浩, 肖春生, 陈学思. 可控释放二氧化硫的高分子纳米药物. 高分子学报, 2024, 55(1), 1-12
Wang, H.; Xiao, C. S.; Chen, X. S. Polymeric nanomedicines for controlled release of sulfur dioxide. Acta Polymerica Sinica, 2024, 55(1), 1-12
王浩, 肖春生, 陈学思. 可控释放二氧化硫的高分子纳米药物. 高分子学报, 2024, 55(1), 1-12 DOI: 10.11777/j.issn1000-3304.2023.23169.
Wang, H.; Xiao, C. S.; Chen, X. S. Polymeric nanomedicines for controlled release of sulfur dioxide. Acta Polymerica Sinica, 2024, 55(1), 1-12 DOI: 10.11777/j.issn1000-3304.2023.23169.
近年来,二氧化硫(SO
2
)气体分子在肿瘤治疗领域展现出巨大的潜力. 然而,传统的使用气体吸入或亚硫酸盐作为供体的方法难以应用于临床. 本综述首先介绍了一系列能够响应性释放SO
2
的有机小分子供体,梳理了这些小分子供体的化学结构及响应性释放方式. 接着,回顾了近年来可控释放SO
2
的高分子纳米药物在肿瘤治疗研究中的发展,简述了这些纳米药物的治疗机理及抗肿瘤效果. 研究表明:将SO
2
与高分子纳米载体技术相结合,解决了有机小分子供体存在水溶性差、肿瘤靶向性不佳等问题. 制备的可控释放SO
2
的高分子纳米药物能够实现在肿瘤部位的靶向富集及SO
2
气体的可控释放,表现出良好的抗肿瘤治疗效果. 最后,分析并指出了可控释放SO
2
高分子纳米药物面临的挑战,并对其未来的发展进行了展望.
Sulfur dioxide (SO
2
)
previously regarded as one of industrial waste gas
has recently been identified as a novel gasotransmitter in living things. SO
2
could be endogenously produced from the metabolism of sulfur-containing amino acids. The endogenous SO
2
can regulate many biological processes
physiological and pathophysiological events. However
excessive cellular SO
2
would cause serious oxidative damages to DNA
proteins
and lipids
and affect the apoptosis-related gene expression in cells. This can be explained by the ability of SO
2
to deplete GSH and induce generation of ROS in cell. Thus
SO
2
has great potential in cancer treatment. However
the traditional inhalation of SO
2
is not suitable for clinical use because of its unpleasant odor. Similarly
using mixed sulfites as donors of SO
2
also cannot meet clinical needs due to their rapid excretion from body. To address these issues
a series of stimuli-responsive SO
2
-releasing small-molecule donors have been developed for controlled release of SO
2
. Most of these small-molecule SO
2
donors exhibit controlled release behaviors and show great potency for therapeutic application. However
the poor water solubility and lack of tumor-targeting ability significantly hamper the clinical translation of these small-molecule SO
2
donors. Very recently
polymeric nanomedicines with controlled SO
2
-releasing ability have been developed through directly conjugating SO
2
-releasing donors onto the side chains of polymer or loading the SO
2
-releasing donors inside the polymeric nanocarriers. The resultant polymeric nanomedicines can achieve improved accumulation and targeted release of SO
2
in tumor sites
leading to enhanced anti-cancer efficacy and ameliorated side effect. All in all
our review firstly summarizes the chemical structure and release mechanisms of small-molecule SO
2
donors
and subsequently
the research progress of SO
2
-releasing polymeric nanomedicines is highlighted. Finally
the challenges and future perspectives on the development of SO
2
-releasing polymeric nanomedicines are briefly discussed.
二氧化硫高分子纳米药物药物载体肿瘤治疗气体治疗
Sulfur dioxidePolymeric nanomedicinesDrug carrierTumor treatmentGas therapy
Sung H.; Ferlay J.; Siegel R. L.; Laversanne M.; Soerjomataram I.; Jemal A.; Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 incancers 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi:10.3322/caac.21660http://dx.doi.org/10.3322/caac.21660
Chen L. C.; Zhou S. F.; Su L. C.; Song J. B. Gas-mediated cancer bioimaging and therapy. ACS Nano, 2019, 13(10), 10887-10917. doi:10.1021/acsnano.9b04954http://dx.doi.org/10.1021/acsnano.9b04954
Ma Z. Y.; Li D. Y.; Jia X.; Wang R. L.; Zhu M. F. Recent advances in bio-inspired versatile polydopamine platforms for “smart” cancer photothermal therapy. Chinese J. Polym. Sci., 2023, 41(5), 699-712. doi:10.1007/s10118-023-2926-2http://dx.doi.org/10.1007/s10118-023-2926-2
Wang X. S.; Zheng Z. S.; Zheng M. F.; Wang D.; Zhang H. L.; Zhang Z. Q.; Liu Z. L.; Tang Z. H.; Han X. M. IL-2-loaded polypeptide nanoparticles for enhanced anti-cancer immunotherapy. Chinese J. Polym. Sci., 2023, 41(7), 1059-1068. doi:10.1007/s10118-023-2898-2http://dx.doi.org/10.1007/s10118-023-2898-2
Dewhirst M. W.; Secomb T. W. Transport of drugs from blood vessels to tumour tissue. Nat. Rev. Cancer, 2017, 17(12), 738-750. doi:10.1038/nrc.2017.93http://dx.doi.org/10.1038/nrc.2017.93
Casas A.; Di Venosa G.; Hasan T.; Batlle A. Mechanisms of resistance to photodynamic therapy. Curr. Med. Chem., 2011, 18(16), 2486-2515. doi:10.2174/092986711795843272http://dx.doi.org/10.2174/092986711795843272
Riley R. S.; June C. H.; Langer R.; Mitchell M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov., 2019, 18(3), 175-196. doi:10.1038/s41573-018-0006-zhttp://dx.doi.org/10.1038/s41573-018-0006-z
Jing Y. Z.; Li S. J.; Sun Z. J. Gas and gas-generating nanoplatforms in cancer therapy. J. Mater. Chem. B, 2021, 9(41), 8541-8557. doi:10.1039/d1tb01661jhttp://dx.doi.org/10.1039/d1tb01661j
Liu R. C.; Peng Y. J.; Lu L. G.; Peng S. J.; Chen T. F.; Zhan M. X. Near-infrared light-triggered nano-prodrug for cancer gas therapy. J. Nanobiotechnol., 2021, 19(1), 1-23. doi:10.1186/s12951-021-01078-xhttp://dx.doi.org/10.1186/s12951-021-01078-x
Liu Y. W.; Pan J. J.; Zhang H.; Shi C. X.; Li G.; Peng Z.; Ma J. X.; Zhou Y.; Zhang L. Short-term exposure to ambient air pollution and asthma mortality. Am. J. Respir. Crit. Care Med., 2019, 200(1), 24-32. doi:10.1164/rccm.201810-1823ochttp://dx.doi.org/10.1164/rccm.201810-1823oc
Chen R. J.; Jiang Y. X.; Hu J. L.; Chen H. L.; Li H. C.; Meng X.; Ji J. S.; Gao Y.; Wang W. D.; Liu C.; Fang W. Y.; Yan H. B.; Chen J. Y.; Wang W. M.; Xiang D. C.; Su X.; Yu B.; Wang Y.; Xu Y. W.; Wang L. F.; Li C. J.; Chen Y. D.; Bell M. L.; Cohen A. J.; Ge J. B.; Huo Y.; Kan H. D. Hourly air pollutants and acute coronary syndrome onset in 1.29 million patients. Circulation, 2022, 145(24), 1749-1760. doi:10.1161/circulationaha.121.057179http://dx.doi.org/10.1161/circulationaha.121.057179
Li Z. G.; Li X. E.; Chen H. Y. Sulfur dioxide: an emerging signaling molecule in plants. Front. Plant Sci., 2022, 13, 891626. doi:10.3389/fpls.2022.891626http://dx.doi.org/10.3389/fpls.2022.891626
Mitsuhashi H.; Yamashita S.; Ikeuchi H.; Kuroiwa T.; Kaneko Y.; Hiromura K.; Ueki K.; Nojima Y. Oxidative stress-dependent conversion of hydrogen sulfide to sulfite by activated neutrophils. Shock, 2005, 24(6), 529-534. doi:10.1097/01.shk.0000183393.83272.dehttp://dx.doi.org/10.1097/01.shk.0000183393.83272.de
Huang Y. Q.; Tang C. S.; Du J. B.; Jin H. F. Endogenous sulfur dioxide: a new member of gasotransmitter family in the cardiovascular system. Oxid. Med. Cell. Longev., 2016, 2016, 8961951. doi:10.1155/2016/8961951http://dx.doi.org/10.1155/2016/8961951
Tolmachev Y. V.; Scherson D. A. Electrochemical reduction of bisulfite in mildly acidic buffers: kinetics of sulfur dioxide-bisulfite interconversion. J. Phys. Chem. A, 1999, 103(11), 1572-1578. doi:10.1021/jp983752chttp://dx.doi.org/10.1021/jp983752c
Ji A. J.; Savon S. R.; Jacobsen D. W. Determination of total serum sulfite by HPLC with fluorescence detection. Clin. Chem., 1995, 41(6), 897-903. doi:10.1093/clinchem/41.6.897http://dx.doi.org/10.1093/clinchem/41.6.897
Banerjee S.; Ghosh S.; Sinha K.; Chowdhury S.; Sil P. C. Sulphur dioxide ameliorates colitis related pathophysiology and inflammation. Toxicology, 2019, 412, 63-78. doi:10.1016/j.tox.2018.11.010http://dx.doi.org/10.1016/j.tox.2018.11.010
Wang X. B.; Du J. B.; Cui H. Sulfur dioxide, a double-faced molecule in mammals. Life Sci., 2014, 98(2), 63-67. doi:10.1016/j.lfs.2013.12.027http://dx.doi.org/10.1016/j.lfs.2013.12.027
Huang Y. Q.; Zhang H.; Lv B. Y.; Tang C. S.; Du J. B.; Jin H. F. Sulfur dioxide: endogenous generation, biological effects, detection, and therapeutic potential. Antioxid. Redox Signal., 2022, 36(4-6), 256-274. doi:10.1089/ars.2021.0213http://dx.doi.org/10.1089/ars.2021.0213
Liu J.; Huang Y. Q.; Chen S.; Tang C. S.; Jin H. F.; Du J. B. Role of endogenous sulfur dioxide in regulating vascular structural remodeling in hypertension. Oxid. Med. Cell. Longev., 2016, 2016, 4529060. doi:10.1155/2016/4529060http://dx.doi.org/10.1155/2016/4529060
Meng Z. Q.; Qin G. H.; Zhang B. DNA damage in mice treated with sulfur dioxide by inhalation. Environ. Mol. Mutagen., 2005, 46(3), 150-155. doi:10.1002/em.20142http://dx.doi.org/10.1002/em.20142
Muller J. G.; Hickerson R. P.; Perez R. J.; Burrows C. J. DNA damage from sulfite autoxidation catalyzed by a nickel(II) peptide. J. Am. Chem. Soc., 1997, 119(7), 1501-1506. doi:10.1021/ja963701yhttp://dx.doi.org/10.1021/ja963701y
Meng Z. Q.; Bai W. Oxidation damage of sulfur dioxide on testicles of mice. Environ. Res., 2004, 96(3), 298-304. doi:10.1016/j.envres.2004.04.008http://dx.doi.org/10.1016/j.envres.2004.04.008
Bai J. L.; Meng Z. Q. Effects of sulfur dioxide on apoptosis-related gene expressions in lungs from rats. Regul. Toxicol. Pharmacol., 2005, 43(3), 272-279. doi:10.1016/j.yrtph.2005.09.002http://dx.doi.org/10.1016/j.yrtph.2005.09.002
Bai J. L.; Meng Z. Q. Expression of caspase and apoptotic signal pathway induced by sulfur dioxide. Environ. Mol. Mutagen., 2010, 51(2), 112-122. doi:10.1002/em.20517http://dx.doi.org/10.1002/em.20517
Li S. Y.; Xu Z. F.; Xia J.; Qin G. H.; Sang N. Sulfur dioxide induces apoptosis via reactive oxygen species generation in rat cardiomyocytes. Environ. Sci. Pollut. Res., 2019, 26(9), 8758-8767. doi:10.1007/s11356-019-04319-7http://dx.doi.org/10.1007/s11356-019-04319-7
Qin G. H.; Wu M. Q.; Wang J. X.; Xu Z. F.; Xia J.; Sang N. Sulfur dioxide contributes to the cardiac and mitochondrial dysfunction in rats. Toxicol Sci, 2016, 151(2), 334-346. doi:10.1093/toxsci/kfw048http://dx.doi.org/10.1093/toxsci/kfw048
Meng Z. Q.; Zhang B. Oxidative damage of sulfur dioxide inhalation on brains and livers of mice. Environ. Toxicol. Pharmacol., 2003, 13(1), 1-8. doi:10.1016/s1382-6689(02)00106-0http://dx.doi.org/10.1016/s1382-6689(02)00106-0
Gaschler M. M.; Stockwell B. R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun., 2017, 482(3), 419-425. doi:10.1016/j.bbrc.2016.10.086http://dx.doi.org/10.1016/j.bbrc.2016.10.086
Wang W. Y.; Wang B. H. SO2 donors and prodrugs, and their possible applications: a review. Front. Chem., 2018, 6, 559. doi:10.3389/fchem.2018.00559http://dx.doi.org/10.3389/fchem.2018.00559
Zhang L. L.; Jin H. F.; Song Y. J.; Chen S. Y.; Wang Y.; Sun Y.; Tang C. S.; Du J. B.; Huang Y. Q. Endogenous sulfur dioxide is a novel inhibitor of hypoxia-induced mast cell degranulation. J. Adv. Res., 2021, 29, 55-65. doi:10.1016/j.jare.2020.08.017http://dx.doi.org/10.1016/j.jare.2020.08.017
Zhang D.; Wang X. L.; Tian X. Y.; Zhang L. L.; Yang G. S.; Tao Y. H.; Liang C.; Li K.; Yu X. Q.; Tang X. J.; Tang C. S.; Zhou J.; Kong W.; Du J. B.; Huang Y. Q.; Jin H. F. The increased endogenous sulfur dioxide acts as a compensatory mechanism for the downregulated endogenous hydrogen sulfide pathway in the endothelial cell inflammation. Front. Immunol., 2018, 9, 882. doi:10.3389/fimmu.2018.00882http://dx.doi.org/10.3389/fimmu.2018.00882
Bansal A.; Simon M. C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol., 2018, 217(7), 2291-2298. doi:10.1083/jcb.201804161http://dx.doi.org/10.1083/jcb.201804161
Niu B. Y.; Liao K. X.; Zhou Y. X.; Wen T.; Quan G. L.; Pan X.; Wu C. B. Application of glutathione depletion in cancer therapy: enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials, 2021, 277, 121110. doi:10.1016/j.biomaterials.2021.121110http://dx.doi.org/10.1016/j.biomaterials.2021.121110
邱文秀, 程翰, 张先正, 卓仁禧. 刺激响应型多肽的研究及其在肿瘤诊疗中的应用. 高分子学报, 2018, (1), 32-44. doi:10.11777/j.issn1000-3304.2018.17256http://dx.doi.org/10.11777/j.issn1000-3304.2018.17256
Malwal S. R.; Sriram D.; Yogeeswari P.; Konkimalla V. B.; Chakrapani H. Design, synthesis, and evaluation of thiol-activated sources of sulfur dioxide (SO2) as antimycobacterial agents. J. Med. Chem., 2012, 55(1), 553-557. doi:10.1021/jm201023ghttp://dx.doi.org/10.1021/jm201023g
Malwal S. R.; Sriram D.; Yogeeswari P.; Chakrapani H. Synthesis and antimycobacterial activity of prodrugs of sulfur dioxide (SO2). Bioorg. Med. Chem. Lett., 2012, 22(11), 3603-3606. doi:10.1016/j.bmcl.2012.04.048http://dx.doi.org/10.1016/j.bmcl.2012.04.048
Pardeshi K. A.; Malwal S. R.; Banerjee A.; Lahiri S.; Rangarajan R.; Chakrapani H. Thiol activated prodrugs of sulfur dioxide (SO2) as MRSA inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(13), 2694-2697. doi:10.1016/j.bmcl.2015.04.046http://dx.doi.org/10.1016/j.bmcl.2015.04.046
Malwal S. R.; Gudem M.; Hazra A.; Chakrapani H. Benzosultines as sulfur dioxide (SO2) donors. Org. Lett., 2013, 15(5), 1116-1119. doi:10.1021/ol400190fhttp://dx.doi.org/10.1021/ol400190f
Zhang D. H.; Macinkovic I.; Devarie-Baez N. O.; Pan J.; Park C. M.; Carroll K. S.; Filipovic M. R.; Xian M. Detection of protein S-sulfhydration by a tag-switch technique. Angew. Chem. Int. Ed, 2014, 53(2), 575-581. doi:10.1002/anie.201305876http://dx.doi.org/10.1002/anie.201305876
Day J. J.; Yang Z. H.; Chen W.; Pacheco A.; Xian M. Benzothiazole sulfinate: a water-soluble and slow-releasing sulfur dioxide donor. ACS Chem. Biol., 2016, 11(6), 1647-1651. doi:10.1021/acschembio.6b00106http://dx.doi.org/10.1021/acschembio.6b00106
Wang W. Y.; Wang B. H. Esterase-sensitive sulfur dioxide prodrugs inspired by modified Julia olefination. Chem. Commun., 2017, 53(73), 1012-10127. doi:10.1039/c7cc05392dhttp://dx.doi.org/10.1039/c7cc05392d
Pardeshi K. A.; Ravikumar G.; Chakrapani H. Esterase sensitive self-immolative sulfur dioxide donors. Org. Lett., 2018, 20(1), 4-7. doi:10.1021/acs.orglett.7b02544http://dx.doi.org/10.1021/acs.orglett.7b02544
Malwal S. R.; Chakrapani H. Benzosulfones as photochemically activated sulfur dioxide (SO2) donors. Org. Biomol. Chem., 2015, 13(8), 2399-2406. doi:10.1039/c4ob02466dhttp://dx.doi.org/10.1039/c4ob02466d
Kodama R.; Sumaru K.; Morishita K.; Kanamori T.; Hyodo K.; Kamitanaka T.; Morimoto M.; Yokojima S.; Nakamura S.; Uchida K. A diarylethene as the SO2 gas generator upon UV irradiation. Chem. Commun., 2015, 51(9), 1736-1738. doi:10.1039/c4cc07790chttp://dx.doi.org/10.1039/c4cc07790c
Venkatesh Y.; Kiran K. S.; Shah S. S.; Chaudhuri A.; Dey S.; Pradeep Singh N. D. One- and two-photon responsive sulfur dioxide (SO2 donors): a combinatorial drug delivery for improved antibiotic therapy. Org. Biomol. Chem., 2019, 17(10), 2640-2645. doi:10.1039/c9ob00090ahttp://dx.doi.org/10.1039/c9ob00090a
Ekladious I.; Colson Y. L.; Grinstaff M. W. Polymer-drug conjugate therapeutics: advances, insights and prospects. Nat. Rev. Drug Discov., 2019, 18(4), 273-294. doi:10.1038/s41573-018-0005-0http://dx.doi.org/10.1038/s41573-018-0005-0
孙瑞, 邱娜莎, 申有青. 高分子抗肿瘤纳米药物的挑战与发展. 高分子学报, 2019, 50(6), 588-601. doi:10.11777/j.issn1000-3304.2019.19005http://dx.doi.org/10.11777/j.issn1000-3304.2019.19005
王月, 汤朝晖. 高分子键合康普瑞汀A4血管阻断剂纳米药物. 高分子学报, 2021, 52(9), 1058-1075. doi:10.11777/j.issn1000-3304.2021.21024http://dx.doi.org/10.11777/j.issn1000-3304.2021.21024
胡川, 高会乐. 肿瘤微环境响应性与调节性递药系统研究进展. 药学学报, 2020, 55(7), 1520-1527.
邢喜红, 赖荣辉, 董平江, 罗建斌. 具有还原刺激响应的聚氨酯胶束的制备和表征. 高分子学报, 2014, (5), 678-685.
Shen W.; Liu W. G.; Yang H. L.; Zhang P.; Xiao C. S.; Chen X. S. A glutathione-responsive sulfur dioxide polymer prodrug as a nanocarrier for combating drug-resistance in cancer chemotherapy. Biomaterials, 2018, 178, 706-719. doi:10.1016/j.biomaterials.2018.02.011http://dx.doi.org/10.1016/j.biomaterials.2018.02.011
Xia M. J.; Guo Z. H.; Liu X. M.; Wang Y.; Xiao C. S. A glutathione-responsive sulfur dioxide polymer prodrug selectively induces ferroptosis in gastric cancer therapy. Biomater. Sci., 2022, 10(15), 4184-4192. doi:10.1039/d2bm00678bhttp://dx.doi.org/10.1039/d2bm00678b
Zhang Y.; Shen W.; Zhang P.; Chen L.; Xiao C. S. GSH-triggered release of sulfur dioxide gas to regulate redox balance for enhanced photodynamic therapy. Chem. Commun., 2020, 56(42), 5645-5648. doi:10.1039/d0cc00470ghttp://dx.doi.org/10.1039/d0cc00470g
Zhang Y.; Zhang H. Y.; He P.; Yi X. A.; Liu X. M.; Xiao C. S. A PEGylated alternating copolymeric prodrug of sulfur dioxide with glutathione responsiveness for Irinotecan delivery. J. Mater. Chem. B, 2021, 9(1), 187-194. doi:10.1039/d0tb02097dhttp://dx.doi.org/10.1039/d0tb02097d
An L.; Zhang P.; Shen W.; Yi X.; Yin W. T.; Jiang R. H.; Xiao C. S. A sulfur dioxide polymer prodrug showing combined effect with doxorubicin in combating subcutaneous and metastatic melanoma. Bioact. Mater., 2021, 6(5), 1365-1374. doi:10.1016/j.bioactmat.2020.10.027http://dx.doi.org/10.1016/j.bioactmat.2020.10.027
Li R. R.; Huang X. Y.; Lu G. L.; Feng C. Mercapto-responsive polymeric nano-carrier capable of releasing sulfur dioxide. Polym. Chem., 2021, 12(6), 939-946. doi:10.1039/d0py01601bhttp://dx.doi.org/10.1039/d0py01601b
Liu P.; Zhang W. F.; Deng J. P.; Zheng Y. E.; Weng J. A.; Yu F.; Wang D. L.; Zheng M.; Kang B.; Zeng H. Chain-shattering polymeric sulfur dioxide prodrug micelles for redox-triggered gas therapy of osteosarcoma. J. Mater. Chem. B, 2022, 10(27), 5263-5271. doi:10.1039/d2tb00287fhttp://dx.doi.org/10.1039/d2tb00287f
Wang R.; Xia X.; Yang Y. J.; Rong X.; Liu T.; Su Z. H.; Zeng X. L.; Du J. J.; Fan J. L.; Sun W.; Peng X. J. A glutathione activatable photosensitizer for combined photodynamic and gas therapy under red light irradiation. Adv. Healthc. Mater., 2022, 11(4), e2102017. doi:10.1002/adhm.202102017http://dx.doi.org/10.1002/adhm.202102017
Roy B.; Kundu M.; Singh A. K.; Singha T.; Bhattacharya S.; Datta P. K.; Mandal M.; Pradeep Singh N. D. Stepwise dual stimuli triggered dual drug release by a single naphthalene based two-photon chromophore to reverse MDR for alkylating agents with dual surveillance in uncaging steps. Chem. Commun., 2019, 55(87), 13140-13143. doi:10.1039/c9cc05604ahttp://dx.doi.org/10.1039/c9cc05604a
Gu R.; Wang L.; Huang X. Y.; Zhang J. Y.; Ou C. J.; Si W. L.; Yu J. G.; Wang W. J.; Dong X. C. pH/glutathione-responsive release of SO2 induced superoxide radical accumulation for gas therapy of cancer. Chem. Commun., 2020, 56(94), 14865-14868. doi:10.1039/d0cc06826hhttp://dx.doi.org/10.1039/d0cc06826h
Sun S. J.; Wang D. W.; Yin R. Y.; Zhang P.; Jiang R. H.; Xiao C. S. A two-in-one nanoprodrug for photoacoustic imaging-guided enhanced sonodynamic therapy. Small, 2022, 18(26), e2202558. doi:10.1002/smll.202202558http://dx.doi.org/10.1002/smll.202202558
Lopez R. F. V.; Lange N.; Guy R.; Bentley M. V. L. B. Photodynamic therapy of skin cancer: controlled drug delivery of 5-ALA and its esters. Adv. Drug Deliv. Rev., 2004, 56(1), 77-94. doi:10.1016/j.addr.2003.09.002http://dx.doi.org/10.1016/j.addr.2003.09.002
Lin X. H.; Song J. B.; Chen X. Y.; Yang H. H. Ultrasound-activated sensitizers and applications. Angew. Chem. Int. Ed., 2020, 59(34), 14212-14233. doi:10.1002/anie.201906823http://dx.doi.org/10.1002/anie.201906823
Sun T.; Zhang G. P.; Ning T. T.; Chen Q. J.; Chu Y. C.; Luo Y. F.; You H. Y.; Su B. Y.; Li C.; Guo Q.; Jiang C. A versatile theranostic platform for colorectal cancer peritoneal metastases: real-time tumor-tracking and photothermal-enhanced chemotherapy. Adv. Sci., 2021, 8(20), e2102256. doi:10.1002/advs.202102256http://dx.doi.org/10.1002/advs.202102256
0
浏览量
224
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构