浏览全部资源
扫码关注微信
1.高分子合成与功能构造教育部重点实验室 浙江大学高分子科学与工程学系 杭州 310027
2.山西浙大新材料与化工研究院 太原 030000
E-mail: dumiao@zju.edu.cn
纸质出版日期:2024-01-20,
网络出版日期:2023-09-27,
收稿日期:2023-06-28,
录用日期:2023-07-24
移动端阅览
陈再宏, 虞海超, 吴子良, 左敏, 宋义虎, 杜淼, 郑强. 高强度两性离子聚合物防污减阻水凝胶涂层的制备. 高分子学报, 2024, 55(1), 99-107
Chen, Z. H.; Yu, H. C.; Wu, Z. L.; Zuo, M.; Song, Y. H.; Du, M.; Zheng, Q. Preparation of high strength zwitterionic polymer hydrogel antifouling and drag reducing coating. Acta Polymerica Sinica, 2024, 55(1), 99-107
陈再宏, 虞海超, 吴子良, 左敏, 宋义虎, 杜淼, 郑强. 高强度两性离子聚合物防污减阻水凝胶涂层的制备. 高分子学报, 2024, 55(1), 99-107 DOI: 10.11777/j.issn1000-3304.2023.23170.
Chen, Z. H.; Yu, H. C.; Wu, Z. L.; Zuo, M.; Song, Y. H.; Du, M.; Zheng, Q. Preparation of high strength zwitterionic polymer hydrogel antifouling and drag reducing coating. Acta Polymerica Sinica, 2024, 55(1), 99-107 DOI: 10.11777/j.issn1000-3304.2023.23170.
在两性离子甲基丙烯酰乙基磺基甜菜碱(SBMA)聚合物体系中引入天然、易得的
κ
-卡拉胶(
κ
-CG)调控前体溶液的流变行为,采用涂覆工艺在硅烷偶联剂处理的玻璃表面制备了多组分双网络水凝胶涂层,并用锆离子(Zr
4+
)配位交联强化
κ
-CG网络结构. 双网络结构使两性离子水凝胶涂层的力学强度得到显著提高,其拉伸强度、断裂伸长率和杨氏模量最高可达2.51 MPa、1620.76%和1.67 MPa. 该水凝胶涂层在玻璃表面呈强粘接状态,粘接能达2500 J·m
-2
. 该水凝胶涂层在不同介质中均表现出较低的溶胀度,可避免因变形导致的涂层脱落. 同时,SBMA使水凝胶表面形成致密水合层,在防污、减阻方面表现优异.
Polymethacrylate sulfonate Betaine (PSBMA) is a classic zwitterionic polymer. As a typical hydrogel
it has the characteristics of high water content
super hydrophilicity
low friction coefficient
low biological toxicity but poor mechanical properties. In this work
the natural and easily available
κ
-carrageenan (
κ
-CG) is employed to endow the preducor solution with good thixotropy. Then
the preducor solution is coated on the glass surface to form multicomponent double network hydrogel coating. In which
κ
-CG network is the first network
acrylamide (AM) and dimethylpropyl sulfonate ethyl methacrylate (SBMA) are the second network monomers
and
N
N'
-Methylene-bis(acrylamide) (MBAA) as crosslinkage agent. The
κ
-CG network is further enhanced using zirconium ion (Zr
4+
) coordination crosslinking. Finally
we get the strong
tough and stable
κ
-CG/AM/SBMA multicomponent double network hydrogel coating. Benefitted by the double network structure
the mechanical properties of the zwitterion polyelectrolyte hydrogel are significantly strengthened. Its best fracture stress
fracture strain
and Young's modulus reaches 2.51 MPa
1620.76% and 1.67 MPa
respectively
which basically meets the conditions for its use in the marine environment. The hydrogel coating swells weakly in different medium (water and seawater). Silane coupling agent KH-570 is used to modify the glass surface which help the hydrogel bond to glass surface. The adhesion energy of the hydrogel coating on glass surface obtained from the 90° peel test reaches about 2500 J·m
-2
. A series of experiments have shown that this
κ
-CG/AM/SBMA ternary double network hydrogel has excellent hydrophilicity
high breaking strength
good toughness
high modulus and low swelling degree. At the same time
due to the existence of surface hydration layer
the hydrogel coating also behaves drag reduction and excellent performance in antifouling.
两性离子聚合物双网络水凝胶涂层力学性能防污性能
Hedgpeth J. W. Marine fouling and its prevention. Science, 1953, 118, 257. doi:10.1126/science.118.3061.257http://dx.doi.org/10.1126/science.118.3061.257
汪国平. 船舶涂料与涂装技术. 北京: 化学工业出版社, 1985. 55-57.
史航, 王鲁明. 含辣椒素防污涂料在海洋网箱网衣中应用研究. 化工新型材料, 2004, 32, 54-56. doi:10.3969/j.issn.1006-3536.2004.11.014http://dx.doi.org/10.3969/j.issn.1006-3536.2004.11.014
刘丽萍, 曹秀凤. 环境友好型海洋防污涂层的研究进展. 材料导报, 2014, 28, 355-357.
何庆光, 任润桃, 叶章基. 船舶防污涂料用树脂基料的发展及作用. 涂料工业, 2009, 39(6), 51-55. doi:10.3969/j.issn.0253-4312.2009.06.014http://dx.doi.org/10.3969/j.issn.0253-4312.2009.06.014
Dafforn K. A.; Lewis J. A.; Johnston E. L. Antifouling strategies: history and regulation, ecological impacts and mitigation. Mar. Pollut. Bull., 2011, 62, 453-465. doi:10.1016/j.marpolbul.2011.01.012http://dx.doi.org/10.1016/j.marpolbul.2011.01.012
Carr L.; Cheng G.; Xue H.; Jiang S. Engineering the polymer backbone to strengthen nonfouling sulfobetaine hydrogels. Langmuir, 2010, 26, 14793-14798. doi:10.1021/la1028004http://dx.doi.org/10.1021/la1028004
Ekblad T.; Bergstro G.; Ederth T.; Conlan S. L.; Mutton R.; Clare A. S.; Wang S.; Liu Y.; Zhao Q.; D'Souza F.; Donnelly G. T.; Willemsen P. R.; Pettitt M. E.; Callow M. E.; Callow J. A.; Liedberg B. Poly(ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments. Biomacromolecules, 2008, 9, 2775-2783. doi:10.1021/bm800547mhttp://dx.doi.org/10.1021/bm800547m
Chen S.; Li L.; Zhao C.; Zheng J. Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010, 51, 5283-5293. doi:10.1016/j.polymer.2010.08.022http://dx.doi.org/10.1016/j.polymer.2010.08.022
Kondo T.; Nomura K.; Gemmei-Ide M.; Kitano H.; Noguchi H.; Uosaki K.; Saruwatari Y. Structure of water at zwitterionic copolymer film-liquid waterinterfaces as examined by the sum frequency generation method. Colloid. Surf., B, 2014, 113, 361-367. doi:10.1016/j.colsurfb.2013.08.051http://dx.doi.org/10.1016/j.colsurfb.2013.08.051
李平, 曾良鹏, 郭宏磊, 郭辉, 李伟华. 两性离子水凝胶的研究进展. 高分子学报, 2020, 51(12), 1307-1320. doi:10.11777/j.issn1000-3304.2020.20124http://dx.doi.org/10.11777/j.issn1000-3304.2020.20124
Yao X.; Liu J.; Yang C.; Yang X.; Wei J.; Xia Y.; Gong X.; Suo Z. Hydrogel paint. Adv. Mater., 2019, 31, e1903062. doi:10.1002/adma.201903062http://dx.doi.org/10.1002/adma.201903062
Yang J.; Bai R.; Chen B.; Suo Z. Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics. Adv. Funct. Mater., 2020, 30, 1901693. doi:10.1002/adfm.201901693http://dx.doi.org/10.1002/adfm.201901693
Yuk H.; Varela C. E.; Nabzdyk C. S.; Mao X.; Padera R. F.; Roche E. T.; Zhao X. Dry double-sided tape for adhesion of wet tissues and devices. Nature, 2019, 575, 169-174. doi:10.1038/s41586-019-1710-5http://dx.doi.org/10.1038/s41586-019-1710-5
Hu Y.; Yang G.; Liang B.; Fang L.; Ma G.; Zhu Q.; Chen S.; Ye X. The fabrication of superlow protein absorption zwitterionic coating by electrochemically mediated atom transfer radical polymerization and its application. Acta Biomater., 2015, 13, 142-149. doi:10.1016/j.actbio.2014.11.023http://dx.doi.org/10.1016/j.actbio.2014.11.023
Gong J. P.; Katsuyama Y.; Kurokawa T.; Osada Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater., 2003, 15, 1155-1158. doi:10.1002/adma.200304907http://dx.doi.org/10.1002/adma.200304907
Nonoyama T.; Gong J. P. Double-network hydrogel and its potential biomedical application: a review. Proc. Inst. Mech. Eng., Part H, 2015, 229, 853-863. doi:10.1177/0954411915606935http://dx.doi.org/10.1177/0954411915606935
Gong J. P. Materials both tough and soft. Science, 2014, 344(6180), 161-162. doi:10.1126/science.1252389http://dx.doi.org/10.1126/science.1252389
Nakajima T.; Furukawa H.; Tanaka Y.; Kurokawa T.; Osada Y.; Gong J. P. True chemical structure of double network hydrogels. Macromolecules, 2009, 42, 2184-2189. doi:10.1021/ma802148phttp://dx.doi.org/10.1021/ma802148p
Janssen D.; De Palma R.; Verlaak S.; Heremans P.; Dehaen W. Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide. Thin Solid Films, 2006, 515, 1433-1438. doi:10.1016/j.tsf.2006.04.006http://dx.doi.org/10.1016/j.tsf.2006.04.006
Guo Z.; Hakkou R.; Yang J. G.; Wang Y. Effects of surface heterogeneities on wetting and contact line dynamics as observed with the captive bubble technique. Colloid. Surf., A, 2021, 615, 126041. doi:10.1016/j.colsurfa.2020.126041http://dx.doi.org/10.1016/j.colsurfa.2020.126041
Gong J. P.; Kagata G.; Osada Y. Friction of gels. 4. Friction on charged gels. J. Phys. Chem. B, 1999, 103, 6007-6014. doi:10.1021/jp990256vhttp://dx.doi.org/10.1021/jp990256v
Kruger N. J. The Bradford method for protein quantitation. Methods Mol. Biol., 1994, 32, 9-15.
Liu S.; Chan W. L.; Li L. Rheological properties and scaling laws of κ‑Carrageenan in aqueous solution. Macromolecules, 2015, 48, 7649-7657. doi:10.1021/acs.macromol.5b01922http://dx.doi.org/10.1021/acs.macromol.5b01922
Yu H.; Zheng S.; Fang L.; Ying Z.; Du M.; Wang J.; Ren K.; Wu Z.; Zheng Q. Reversibly transforming a highly swollen polyelectrolyte hydrogel to an extremely tough one and its application as a tubular grasper. Adv. Mater., 2020, F32(49), 2005171. doi:10.1002/adma.202005171http://dx.doi.org/10.1002/adma.202005171
陈璐. 含缔合结构聚合物水分散液流变行为研究及其在超润滑水凝胶中的应用. 浙江大学博士学位论文, 2022.
Chambers L. D.; Stokes K. R.; Walsh F. C.; Wood R. J. K. Modern approaches to marine antifouling coatings. Surf. Coat. Technol., 2006, 201(6), 3642-3652. doi:10.1016/j.surfcoat.2006.08.129http://dx.doi.org/10.1016/j.surfcoat.2006.08.129
Ventura C.; Guerin A. J.; El-Zubir O.; Ruiz-Sanchez A. J.; Dixon L. I.; Reynolds K. J.; Dale M. L.; Ferguson J.; Houlton A.; Horrocks B. R.; Clare A. S.; Fulton D. A. Marine antifouling performance of polymer coatings incorporating zwitterions. Biofouling, 2017, 33(10), 892-903. doi:10.1080/08927014.2017.1383983http://dx.doi.org/10.1080/08927014.2017.1383983
0
浏览量
465
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构