浏览全部资源
扫码关注微信
吉林大学化学学院 超分子结构与材料国家重点实验室 长春 130012
E-mail: anzesheng@jlu.edu.cn
纸质出版日期:2024-01-20,
网络出版日期:2023-09-20,
收稿日期:2023-06-30,
录用日期:2023-07-31
移动端阅览
覃小玲, 安泽胜. 链转移剂胶束调控可逆失活-断裂链转移聚合物的分散度. 高分子学报, 2024, 55(1), 67-78
Qin, X. L.; An, Z. S. Reversible addition-fragmentation chain transfer dispersity regulation by chain transfer agent micelles. Acta Polymerica Sinica, 2024, 55(1), 67-78
覃小玲, 安泽胜. 链转移剂胶束调控可逆失活-断裂链转移聚合物的分散度. 高分子学报, 2024, 55(1), 67-78 DOI: 10.11777/j.issn1000-3304.2023.23172.
Qin, X. L.; An, Z. S. Reversible addition-fragmentation chain transfer dispersity regulation by chain transfer agent micelles. Acta Polymerica Sinica, 2024, 55(1), 67-78 DOI: 10.11777/j.issn1000-3304.2023.23172.
聚合物的分子量和分子量分布(分散度)是决定聚合物性能的重要参数. 目前通过聚合调控分散度的方法大都针对有机溶液聚合体系,缺乏有特色的在水相聚合体系中调控分散度的方法. 本文中提出一种链转移剂胶束调控聚合物分散度的新方法. 选用葡萄糖氧化酶(GOx)除氧-氧化还原引发可逆失活-断裂链转移(RAFT)聚合方法,利用双亲性链转移剂在水溶液中存在的游离分子与胶束的热力学平衡,实现对聚合物分散度的调控. 通过监测聚合过程中链转移剂胶束的变化,证实了链转移剂胶束对分散度调控的重要作用. 研究了溶液的pH、添加剂,包括电解质、表面活性剂和助表面活性剂对聚合物分散度的影响. 通过“一锅法”成功合成嵌段共聚物,验证了宽分散度的聚合物同样具有高的链端保真度.
Molecular weight and molecular weight distribution (dispersity
Ð
) of polymers have an important effect on polymer properties. In recent years
most methods for regulating dispersity are focused on polymerization in organic solution
but innovative strategies for regulating dispersity in aqueous solution are still scarce. Herein
we report a novel chain transfer agent (CTA) micellar strategy for dispersity control in reversible addition-fragmentation chain transfer (RAFT) polymerization. This is realized by choosing an amphiphilic CTA which is able to form micelle and polymerization was carried out
via
cascade reactions involving enzymatic deoxygenation and redox initiation. During polymerization
CTA in aqueous solution is first consumed
biasing the micellar equilibrium towards dissolution and consequently broadening of dispersity due to the difference in polymerization time experienced by the polymer chains. Solution pH
sodium chloride
1-octadecanol
but not sodium dodecanesulfate
all have effect on dispersity control. We show that by varying the solution pH (5.8‒7.1) for polymerizations at a monomer concentration of 1 mol/L
a range of dispersities can be obtained at different degrees of polymerization: for DP 1018
Đ
is in the range of 1.33‒1.18; for DP 504
Đ
is in the range of 1.39‒1.26; for DP 339
Đ
is in the range of 1.51‒1.32. Besides
the dispersity can be increased to 1.55 or reduced to 1.33 after additives were added in aqueous solution (pH=5.8). Generally
higher pH resulted in lower
Đ
values due to increased degree of ionization of the carboxylic acid group of the CTA
which lowered the CMC and thus the size and stability of the micelles formed by the CTA. The importance of micelles played in dispersity tuning was further confirmed by (1) polymerization at a monomer concentration of 2 mol/L and (2) the use of a totally hydrophilic CTA. In both cases
polymers with narrow dispersities (
Đ
≤1.17) were obtained regardless of the pH of the solution
which were attributed to no micelle formation in solution at a high organic (monomer) content or the use of a totally hydrophilic CTA. Further kinetic studies were conducted following the changes of the fluorescence of nile red and dynamic light scattering (DLS) during the polymerization. As polymerization proceeded
the fluorescence of nile red experienced a blue shift
indicating the microenvironment of nile red was gradually changed from being inside of the micelle to being surrounded by aqueous solution. In addition
DLS showed a reduction in the size of micelles during the polymerization. The fluorescence and DLS studies suggest disintegration of the micelles during polymerization
and it is this gradually disintegration of CTA micelles that contributes to the broadening of dispersity. However
polymers with a high dispersity still possessed high end-group fidelity
which was confirmed by one-pot synthesis of block copolymers.
分散度分子量分布可逆失活-断裂链转移聚合链转移剂胶束
DispersityMolecular weight distributionReversible addition-fragmentation chain transfer polymerizationChain transfer agentMicelle
Gentekos D. T.; Sifri R. J.; Fors B. P. Controlling polymer properties through the shape of the molecular-weight distribution. Nat. Rev. Mater., 2019, 4(12), 761-774. doi:10.1038/s41578-019-0138-8http://dx.doi.org/10.1038/s41578-019-0138-8
Harrisson S. The downside of dispersity: why the standard deviation is a better measure of dispersion in precision polymerization. Polym. Chem., 2018, 9(12), 1366-1370. doi:10.1039/c8py00138chttp://dx.doi.org/10.1039/c8py00138c
Whitfield R.; Truong N. P.; Anastasaki A. Precise control of both dispersity and molecular weight distribution shape by polymer blending. Angew. Chem. Int. Ed., 2021, 60(35), 19383-19388. doi:10.1002/anie.202106729http://dx.doi.org/10.1002/anie.202106729
Corrigan N.; Almasri A.; Taillades W.; Xu J. T.; Boyer C. Controlling molecular weight distributions through photoinduced flow polymerization. Macromolecules, 2017, 50(21), 8438-8448. doi:10.1021/acs.macromol.7b01890http://dx.doi.org/10.1021/acs.macromol.7b01890
Antonopoulou M. N.; Whitfield R.; Truong N. P.; Wyers D.; Harrisson S.; Junkers T.; Anastasaki A. Concurrent control over sequence and dispersity in multiblock copolymers. Nat. Chem., 2022, 14(3), 304-312. doi:10.1038/s41557-021-00818-8http://dx.doi.org/10.1038/s41557-021-00818-8
Whitfield R.; Parkatzidis K.; Truong N. P.; Junkers T.; Anastasaki A. Tailoring polymer dispersity by RAFT polymerization: a versatile approach. Chem, 2020, 6(6), 1340-1352. doi:10.1016/j.chempr.2020.04.020http://dx.doi.org/10.1016/j.chempr.2020.04.020
Rolland M.; Truong N. P.; Whitfield R.; Anastasaki A. Tailoring polymer dispersity in photoinduced iron-catalyzed ATRP. ACS Macro Lett., 2020, 9(4), 459-463. doi:10.1021/acsmacrolett.0c00121http://dx.doi.org/10.1021/acsmacrolett.0c00121
Rolland M.; Lohmann V.; Whitfield R.; Truong N. P.; Anastasaki A. Understanding dispersity control inphoto-atom transfer radical polymerization: effect of degree of polymerization and kinetic evaluation. J. Polym. Sci., 2021, 59(21), 2502-2509. doi:10.1002/pol.20210319http://dx.doi.org/10.1002/pol.20210319
Gentekos D. T.; Dupuis L. N.; Fors B. P. Beyond dispersity: deterministic control of polymer molecular weight distribution. J. Am. Chem. Soc., 2016, 138(6), 1848-1851. doi:10.1021/jacs.5b13565http://dx.doi.org/10.1021/jacs.5b13565
Sifri R. J.; Padilla-Vélez O.; Coates G. W.; Fors B. P. Controlling the shape of molecular weight distributions in coordination polymerization and its impact on physical properties. J. Am. Chem. Soc., 2020, 142(3), 1443-1448. doi:10.1021/jacs.9b11462http://dx.doi.org/10.1021/jacs.9b11462
Kottisch V.; Gentekos D. T.; Fors B. P. “Shaping” the future of molecular weight distributions in anionic polymerization. ACS Macro Lett., 2016, 5(7), 796-800. doi:10.1021/acsmacrolett.6b00392http://dx.doi.org/10.1021/acsmacrolett.6b00392
Chen M. A.; Li J. J.; Ma K. Q.; Jin G. Q.; Pan X. Q.; Zhang Z. B.; Zhu J. A. Controlling polymer molecular weight distribution through a latent mediator strategy with temporal programming. Angew. Chem. Int. Ed., 2021, 60(36), 19705-19709. doi:10.1002/anie.202107106http://dx.doi.org/10.1002/anie.202107106
Liu X.; Wang C. G.; Goto A. Polymer dispersity control by organocatalyzed living radical polymerization. Angew. Chem. Int. Ed., 2019, 58(17), 5598-5603. doi:10.1002/anie.201814573http://dx.doi.org/10.1002/anie.201814573
Wang C. G.; Chong A. M. L.; Goto A. One reagent with two functions: simultaneous living radical polymerization and chain-end substitution for tailoring polymer dispersity. ACS Macro Lett., 2021, 10(5), 584-590. doi:10.1021/acsmacrolett.1c00179http://dx.doi.org/10.1021/acsmacrolett.1c00179
Jia R.; Tu Y. Y.; Glauber M.; Huang Z. H.; Xuan S. T.; Zhang W. D.; Zhou N. C.; Li X. H.; Zhang Z. B.; Zhu X. L. Fine control of the molecular weight and polymer dispersity via a latent monomeric retarder. Polym. Chem., 2021, 12(3), 349-355. doi:10.1039/d0py01569ehttp://dx.doi.org/10.1039/d0py01569e
Zhou Y.; Fu Y. K.; Chen M. Facile control of molecular weight distribution via droplet-flow light-driven reversible-deactivation radical polymerization. Chinese J. Chem., 2022, 40(19), 2305-2312. doi:10.1002/cjoc.202200236http://dx.doi.org/10.1002/cjoc.202200236
Zhang B. H.; Wang X. J.; Zhu A. Q.; Ma K.; Lv Y. E.; Wang X. A.; An Z. S. Enzyme-initiated reversible addition-fragmentation chain transfer polymerization. Macromolecules, 2015, 48(21), 7792-7802. doi:10.1021/acs.macromol.5b01893http://dx.doi.org/10.1021/acs.macromol.5b01893
Rettig W. Charge separation in excited states of decoupled sSystems—TICT compounds and implications regarding the development of new laser dyes and the primary process of vision and photosynthesis. Angew. Chem. Int. Ed., 1986, 25(11), 971-988. doi:10.1002/anie.198609711http://dx.doi.org/10.1002/anie.198609711
Jiang J. Q.; Tong X. A.; Morris D.; Zhao Y. E. Toward photocontrolled release using light-dissociable block copolymer micelles. Macromolecules, 2006, 39(13), 4633-4640. doi:10.1021/ma060142zhttp://dx.doi.org/10.1021/ma060142z
Lin C. Y.; Zhao J. X. Nile red probing for sphere-to-rod-to-wormlike micelle transition in aqueous surfactant solution. Dyes Pigm., 2010, 84(3), 223-228. doi:10.1016/j.dyepig.2009.09.006http://dx.doi.org/10.1016/j.dyepig.2009.09.006
Lv Y. E.; Liu Z. F.; Zhu A. Q.; An Z. S. Glucose oxidase deoxygenation-redox initiation for RAFT polymerization in air. J. Polym. Sci. A, 2017, 55(1), 164-174. doi:10.1002/pola.28380http://dx.doi.org/10.1002/pola.28380
Li R. Y.; Kong W. N.; An Z. S. Enzyme catalysis for reversible deactivation radical polymerization. Angew. Chem. Int. Ed., 2022, 61(26), e202202033. doi:10.1002/anie.202202033http://dx.doi.org/10.1002/anie.202202033
Li R. Y.; Zhang S. D.; Li Q. S.; Qiao G. G.; An Z. S. An atom-economic enzymatic cascade catalysis for high-throughput RAFT synthesis of ultrahigh molecular weight polymers. Angew. Chem. Int. Ed., 2022, 61(46), e202213396. doi:10.1002/anie.202213396http://dx.doi.org/10.1002/anie.202213396
Li R. Y.; Kong W. N.; An Z. S. Controlling radical polymerization with biocatalysts. Macromolecules, 2023, 56(3), 751-761. doi:10.1021/acs.macromol.2c02307http://dx.doi.org/10.1021/acs.macromol.2c02307
Padilla-Martínez S. G.; Martínez-Jothar L.; Sampedro J. G.; Tristan F.; Pérez E. Enhanced thermal stability and pH behavior of glucose oxidase on electrostatic interaction with polyethylenimine. Int. J. Biol. Macromol., 2015, 75, 453-459. doi:10.1016/j.ijbiomac.2015.02.005http://dx.doi.org/10.1016/j.ijbiomac.2015.02.005
Dutta A. K.; Kamada K.; Ohta K. Langmuir-blodgett films of Nile red: a steady-state and time-resolved fluorescence study. Chem. Phys. Lett., 1996, 258(3-4), 369-375. doi:10.1016/0009-2614(96)00628-8http://dx.doi.org/10.1016/0009-2614(96)00628-8
Du J. Z.; Willcock H.; Patterson J. P.; Portman I.; O’Reilly R. K. Self-assembly of hydrophilic homopolymers: a matter of RAFT end groups. Small, 2011, 7(14), 2070-2080. doi:10.1002/smll.201100382http://dx.doi.org/10.1002/smll.201100382
Fu Z. X.; Chen P.; Liu Y.; Li J. Y. Experimental study of the influence of inorganic salts on foam stability. Langmuir, 2022, 38(48), 14607-14614. doi:10.1021/acs.langmuir.2c01954http://dx.doi.org/10.1021/acs.langmuir.2c01954
Mitrinova Z.; Chenkova M.; Denkov N.; Tcholakova S. Cosurfactants for controlling the surface properties of diluted solutions: interplay with bulk rheology of concentrated solutions. Colloids Surf. A, 2022, 648, 129221. doi:10.1016/j.colsurfa.2022.129221http://dx.doi.org/10.1016/j.colsurfa.2022.129221
Carnero Ruiz C.; Aguiar J. Mixed micelles of triton X100: interaction, composition, stability and micro-environmental properties of the aggregates. Mol. Phys., 1999, 97(10), 1095-1103. doi:10.11777/j.issn1000-3304.2023.23172http://dx.doi.org/10.11777/j.issn1000-3304.2023.23172
0
浏览量
196
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构