浏览全部资源
扫码关注微信
1.辽宁科技大学化工学院 鞍山 114051
2.大连理工大学化工学院 精细化工国家重点实验室 碳素实验室 大连 116024
E-mail: xiaoguoyong@ustl.edu.cn
luyunhua@ustl.edu.cn
纸质出版日期:2024-02-20,
网络出版日期:2023-10-31,
收稿日期:2023-07-06,
录用日期:2023-08-18
移动端阅览
李品儒, 肖国勇, 陈元林, 鲁云华, 李琳, 王同华. 含四芳基咪唑结构的热重排气体分离膜的制备与性能研究. 高分子学报, 2024, 55(2), 212-221
Li, P. R.; Xiao, G. Y.; Chen, Y. L.; Lu, Y. H.; Li, L.; Wang, T. H. Preparation and performance of thermally rearranged gas separation membranes containing tetraarylimidazole structure. Acta Polymerica Sinica, 2024, 55(2), 212-221
李品儒, 肖国勇, 陈元林, 鲁云华, 李琳, 王同华. 含四芳基咪唑结构的热重排气体分离膜的制备与性能研究. 高分子学报, 2024, 55(2), 212-221 DOI: 10.11777/j.issn1000-3304.2023.23178.
Li, P. R.; Xiao, G. Y.; Chen, Y. L.; Lu, Y. H.; Li, L.; Wang, T. H. Preparation and performance of thermally rearranged gas separation membranes containing tetraarylimidazole structure. Acta Polymerica Sinica, 2024, 55(2), 212-221 DOI: 10.11777/j.issn1000-3304.2023.23178.
合成了一种新型含四芳基咪唑结构的二胺单体4
4'-(4
5-二苯基-(3-羟基-4-氨基苯氧基)苯基)咪唑(PMAPPP),然后分别与5种二酐单体聚合,经热酰亚胺化处理得到含羟基聚酰亚胺(HPI)薄膜. 接着,对这些薄膜进行450 ℃热处理,得到相应的热重排(TR)膜材料,并对薄膜进行了结构与性能表征. 结果表明,刚性大体积四芳基咪唑结构的引入使HPI膜表现出优异的热性能和力学性能,玻璃化转变温度在263~361 ℃,拉伸强度在98.4~118.3 MPa. 热重排后,TR膜的气体分离性能得到了显著提高. 其中,TR(PMAPPP-6FDA)的气体渗透性能最佳,即H
2
(269.31 Barrer)、CO
2
(284.25 Barrer)、O
2
(62.75 Barrer)和N
2
(10.67 Barrer),CO
2
/N
2
和O
2
/N
2
的理想选择性分别为25.24和5.88,且O
2
/N
2
的分离性能超过2008 Robeson上限. 因此,将四芳基咪唑结构引入到HPI分子结构中,可以获得一类气体分离性能优异的TR膜材料.
In recent years
the thermal rearrangement (TR) membrane materials derived from hydroxyl-containing polyimides (HPI) as precursors have received extensive attention in the field of gas separation. In this study
the dihydroxy compound 4
4'-(4
5-diphenyl-(4-hydroxyphenyl))imidazole (PMOPPP) containing rigid and bulky tetraarylmidazole structure was first synthesized
and then reacted with 5-fluoro-2-nitrophenol to produce a dinitro compound 4
4'-(4
5-diphenyl-(3-hydroxy-4-nitrophenoxy)phenyl)imidazole (PMNPPP). After reduction treatment
a new kind of diamine monomer 4
4'-(4
5-diphenyl-(3-hydroxy-4-aminophenoxy)phenyl)imidazole (PMAPPP) was obtained. Then
the diamine PMAPPP was separately polymerized with five kinds of dianhydride monomers
followed by thermal imidization treatment to obtain HPI membranes. Subsequently
these membranes were further thermally treated at 450 ℃ for 1 h to obtain the corresponding TR membranes
and the structure and performance of these membrane materials were characterized. The testing results showed that the introduction of rigid and large volume tetraarylimidazole structure resulted in excellent thermal and mechanical properties of five HPI membranes
and the glass transition temperatures (
T
g
) were in the range of 263‒361 ℃ and the tensile strength ranged from 98.4 MPa to 118.3 MPa. Compared to HPI membrane materials
the gas separation performances of TR membranes were significantly improved. Among them
the TR(PMAPPP-6FDA) exhibited the highest gas permeabilities
namely H
2
(269.31 Barrer)
CO
2
(284.25 Barrer)
O
2
(62.75 Barrer) and N
2
(10.67 Barrer). Moreover
the ideal selectivities of CO
2
/N
2
O
2
/N
2
and H
2
/N
2
were 25.24
5.88 and 26.64
respectively
and the O
2
/N
2
separation performance was beyond the 2008 Robeson upper bound.
四芳基咪唑结构聚酰亚胺热重排气体分离膜
Tetraarylimidazole structurePolyimideThermal rearrangementGas separation membranes
Da Conceicao M.; Nemetz L.; Rivero J.; Hornbostel K.; Lipscomb G. Gas separation membrane module modeling: a comprehensive review. Membranes, 2023, 13(7), 639. doi:10.3390/membranes13070639http://dx.doi.org/10.3390/membranes13070639
Luque-Alled J. M.; Moreno C.; Gorgojo P. Two-dimensional materials for gas separation membranes. Curr. Opin. Chem. Eng., 2023, 39, 100901. doi:10.1016/j.coche.2023.100901http://dx.doi.org/10.1016/j.coche.2023.100901
Xiao Y. C.; Low B. T.; Hosseini S. S.; Chung T. S.; Paul D. R. The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—a review. Prog. Ploym. Sci., 2009, 34(6), 561-580. doi:10.1016/j.progpolymsci.2008.12.004http://dx.doi.org/10.1016/j.progpolymsci.2008.12.004
Tena A.; Rangou S.; Shishatskiy S.; Filiz V.; Abetz V. Claisen thermally rearranged (CTR) polymers. Mater. Sci., 2016, 2(7), 29-37. doi:10.1126/sciadv.1501859http://dx.doi.org/10.1126/sciadv.1501859
Kim S.; Lee Y. M. Rigid and microporous polymers for gas separation membranes. Prog. Polym. Sci., 2015, 43, 1-32. doi:10.1016/j.progpolymsci.2014.10.005http://dx.doi.org/10.1016/j.progpolymsci.2014.10.005
Robeson L. M.; Freeman B. D.; Paul D. R.; Rowe B. W. An empirical correlation of gas permeability and permselectivity in polymers and its theoretical basis. J. Membr. Sci., 2009, 341(1-2), 178-185. doi:10.1016/j.memsci.2009.06.005http://dx.doi.org/10.1016/j.memsci.2009.06.005
Robeson L. M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci., 1991, 62(2), 165-185. doi:10.1016/0376-7388(91)80060-jhttp://dx.doi.org/10.1016/0376-7388(91)80060-j
Robeson, L. M. The upper bound revisited. J. Membr. Sci., 2008, 320(1-2), 390-400. doi:10.1016/j.memsci.2008.04.030http://dx.doi.org/10.1016/j.memsci.2008.04.030
Swaidan R.; Ghanem B.; Pinnau I. Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations. ACS Macro Lett., 2015, 4(9), 947-951. doi:10.1021/acsmacrolett.5b00512http://dx.doi.org/10.1021/acsmacrolett.5b00512
Lee W. L.; Seong J. G.; Hu X. F.; Lee Y. M. Recent progress in microporous polymers from thermally rearranged polymers and polymers of intrinsic microporosity for membrane gas separation: Pushing performance limits and revisiting trade-off lines. J. Membr. Sci., 2020, 58(18), 2450-2466. doi:10.1002/pol.20200110http://dx.doi.org/10.1002/pol.20200110
Wang Z. G.; Isfahani A. P.; Wakimoto K.; Shrestha B.; Yamaguchi D.; Ghalei B.; Sivaniah E. Tuning the gas selectivity of tröger’s base polyimide membranes by using carboxylic acid and tertiary base interactions. ChemSusChem, 2018, 11(16), 2744-2751. doi:10.1002/cssc.201801002http://dx.doi.org/10.1002/cssc.201801002
Sanaeepur H.; Ebadi Amooghin A.; Bandehali S.; Moghadassi A.; Matsuura T.; van der Bruggen B. Polyimides in membrane gas separation: monomer’s molecular design and structural engineering. Prog. Polym. Sci., 2019, 91, 80-125. doi:10.1016/j.progpolymsci.2019.02.001http://dx.doi.org/10.1016/j.progpolymsci.2019.02.001
Tong H.; Hu C. C.; Yang S. Y.; Ma Y. P.; Guo H. X.; Fan L. Preparation of fluorinated polyimides with bulky structure and their gas separation performance correlated with microstructure. Polymer, 2015, 69, 138-147. doi:10.1016/j.polymer.2015.05.045http://dx.doi.org/10.1016/j.polymer.2015.05.045
Ma Y. N.; He X. Y.; Tang S. H.; Xu S. S.; Qian Y. Q.; Zeng L. L.; Tang K. W. Enhanced 2-D MOFs nanosheets/PIM-PMDA-OH mixed matrix membrane for efficient CO2 separation. J. Environ. Chem. Eng., 2022, 10(2), 107274. doi:10.1016/j.jece.2022.107274http://dx.doi.org/10.1016/j.jece.2022.107274
Comesaña-Gandara B.; Ansaloni L.; Lee Y. M.; Lozano A. E.; de Angelis M. G. Sorption, diffusion, and permeability of humid gases and aging of thermally rearranged (TR) polymer membranes from a novel ortho-hydroxypolyimide. J. Membr. Sci., 2017, 542, 439-455. doi:10.1016/j.memsci.2017.08.009http://dx.doi.org/10.1016/j.memsci.2017.08.009
Brunetti A.; Tocci E.; Cersosimo M.; Kim J. S.; Lee W. H.; Seong J. G.; Lee Y. M.; Drioli E.; Barbieri G. Mutual influence of mixed-gas permeation in thermally rearranged poly(benzoxazole-co-imide) polymer membranes. J. Membr. Sci., 2019, 580, 202-213. doi:10.1016/j.memsci.2019.01.058http://dx.doi.org/10.1016/j.memsci.2019.01.058
Lu Y. H.; Zhang J. H.; Xiao G. Y.; Li L.; Hou M. J.; Hu J. Y.; Wang T. H. Synthesis and gas permeation properties of thermally rearranged poly(ether-benzoxazole)s with low rearrangement temperatures. RSC Adv., 2020, 10(30), 17461-17472. doi:10.1039/d0ra00145ghttp://dx.doi.org/10.1039/d0ra00145g
Smith S. J. D.; Hou R. J.; Lau C. H.; Konstas K.; Kitchin M.; Dong G. X.; Lee J.; Lee W. H.; Seong J. G.; Lee Y. M.; Hill M. R. Highly permeable thermally rearranged mixed matrix membranes (TR-MMM). J. Membr. Sci., 2019, 585, 260-270. doi:10.1016/j.memsci.2019.05.046http://dx.doi.org/10.1016/j.memsci.2019.05.046
Lee W. H.; Seong J. G.; Bae J. Y.; Wang H. H.; Moon S. J.; Jung J. T.; Do Y. S.; Kang H.; Park C. H.; Lee Y. M. Thermally rearranged semi-interpenetrating polymer network (TR-SIPN) membranes for gas and olefin/paraffin separation. J. Membr. Sci., 2021, 625, 119157. doi:10.1016/j.memsci.2021.119157http://dx.doi.org/10.1016/j.memsci.2021.119157
Calle M.; Lee Y. M. Thermally rearranged (TR) poly(ether-benzoxazole) membranes for gas separation. Macromolecules, 2011, 44(5), 1156-1165. doi:10.1021/ma102878zhttp://dx.doi.org/10.1021/ma102878z
Bandehali S.; Ebadi Amooghin A.; Sanaeepur H.; Ahmadi R.; Fuoco A.; Jansen J. C.; Shirazian S. Polymers of intrinsic microporosity and thermally rearranged polymer membranes for highly efficient gas separation. Sep. Purif. Technol., 2021, 278, 119513. doi:10.1016/j.seppur.2021.119513http://dx.doi.org/10.1016/j.seppur.2021.119513
Zhang J. H.; Lu Y. H.; Xiao G. Y.; Hou M. J.; Li L.; Wang T. H. Enhanced gas separation and mechanical properties of fluorene-based thermal rearrangement copolymers. RSC Adv., 2021, 11(22), 13164-13174. doi:10.1039/d0ra10775ahttp://dx.doi.org/10.1039/d0ra10775a
Hu X. F.; Lee W. H.; Zhao J. Y.; Kim J. S.; Wang Z.; Yan J. L.; Zhuang Y. B.; Lee Y. M. Thermally rearranged polymer membranes containing highly rigid biphenyl ortho-hydroxyl diamine for hydrogen separation. J. Membr. Sci., 2020, 604, 118053. doi:10.1016/j.memsci.2020.118053http://dx.doi.org/10.1016/j.memsci.2020.118053
Kostina J.; Rusakova O.; Bondarenko G.; Alentiev A.; Meleshko T.; Kukarkina N.; Yakimanskii A.; Yampolskii Y. Thermal rearrangement of functionalized polyimides: IR-spectral, quantum chemical studies and gas permeability of TR polymers. Ind. Eng. Chem. Res., 2013, 52(31), 10476-10483. doi:10.1021/ie3034043http://dx.doi.org/10.1021/ie3034043
Luo S. J.; Liu J. Y.; Lin H. Q.; Kazanowska B. A.; Hunckler M. D.; Roeder R. K.; Guo R. L. Preparation and gas transport properties of triptycene-containing polybenzoxazole (PBO)-based polymers derived from thermal rearrangement (TR) and thermal cyclodehydration (TC) processes. J. Mater. Chem. A, 2016, 4(43), 17050-17062. doi:10.1039/c6ta03951khttp://dx.doi.org/10.1039/c6ta03951k
Aguilar-Lugo C.; Alvarez C.; Lee Y. M.; de la Campa J. G.; Lozano Á. E. Thermally rearranged polybenzoxazoles containing bulky adamantyl groups from ortho-substituted precursor copolyimides. Macromolecules, 2018, 51(5), 1605-1619. doi:10.1021/acs.macromol.7b02460http://dx.doi.org/10.1021/acs.macromol.7b02460
Swaidan R. J.; Ma X. H.; Pinnau I. Spirobisindane-based polyimide as efficient precursor of thermally-rearranged and carbon molecular sieve membranes for enhanced propylene/propane separation. J. Membr. Sci., 2016, 520, 983-989. doi:10.1016/j.memsci.2016.08.057http://dx.doi.org/10.1016/j.memsci.2016.08.057
Lu Y. H.; Hao J. C.; Li L.; Song J.; Xiao G. Y.; Zhao H. B.; Hu Z. Z.; Wang T. H. Preparation and gas transport properties of thermally induced rigid membranes of copolyimide containing cardo moieties. React. Funct. Polym., 2017, 119, 134-144. doi:10.1016/j.reactfunctpolym.2017.08.013http://dx.doi.org/10.1016/j.reactfunctpolym.2017.08.013
Hou M. J.; Li L.; He Z. L.; Xu R. S.; Lu Y. H.; Wang T. H. High hydrogen permselective carbon molecular sieve membrane and its structural formation mechanism. Carbon, 2023, 205, 194-206. doi:10.1016/j.carbon.2023.01.035http://dx.doi.org/10.1016/j.carbon.2023.01.035
0
浏览量
151
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构