浏览全部资源
扫码关注微信
1.北京工商大学化学系 北京 100048
2.中国科学院化学研究所 北京 100191
3.山东科学院先进材料研究所 济南 250014
E-mail: lish@th.btbu.edu.cn
E-mail: aihong@iccas.ac.cn
纸质出版日期:2024-01-20,
网络出版日期:2023-10-24,
收稿日期:2023-07-10,
录用日期:2023-08-18
移动端阅览
李书宏, 项锴, 徐彩虹. 经Piers-Rubinsztajn反应制备含硅杂化多孔材料. 高分子学报, 2024, 55(1), 91-98
Li, S. H.; Xiang, K.; Xu, C. H. Preparation of silicon-containing hybrid porous materials by Piers-Rubinsztajn reaction. Acta Polymerica Sinica, 2024, 55(1), 91-98
李书宏, 项锴, 徐彩虹. 经Piers-Rubinsztajn反应制备含硅杂化多孔材料. 高分子学报, 2024, 55(1), 91-98 DOI: 10.11777/j.issn1000-3304.2023.23182.
Li, S. H.; Xiang, K.; Xu, C. H. Preparation of silicon-containing hybrid porous materials by Piers-Rubinsztajn reaction. Acta Polymerica Sinica, 2024, 55(1), 91-98 DOI: 10.11777/j.issn1000-3304.2023.23182.
利用B(C
6
F
5
)
3
催化的Piers-Rubinsztajn反应,探讨了螺旋桨结构四苯基乙烯(TPE)分子与多面体低聚倍半硅氧烷(POSS)合成反应路线,制备了POSS基有机-无机杂化多孔材料. 该反应的突出特点是生成的Si-O-C键合产物中POSS核保持完整. 采用氮气吸附-脱附分析及热重分析对POSS基杂化多孔材料
P4
的孔性能和热性能进行了初步研究. 其比表面积为
S
BET
=582 m
2
/g,非定域密度泛函理论(NL-DFT)计算得到其孔体积是0.43 cm
3
/g,热重分析显示
P4
初始分解温度为463 ℃. 上述结果表明,该杂化材料是一类介孔和微孔并存、并具有很好热稳定性的材料. 该工作为构建有机-无机杂化多孔材料提供了新的思路.
Organic-inorganic hybrid porous polymers not only exhibit the diversity of synthesis and flexibility in pore performance control as that of organic porous materials
but also show excellent thermal stability and mechanical properties of inorganic porous materials
and thus play a very important role in the field of porous materials. Polyhedral oligomeric silsesquioxane (POSS) has highly symmetrical structure
is easy to be chemically modified
and has excellent thermal and chemical stability. The silicon oxygen connection at the center of POSS is identical to the Si―O―Si double quaternary ring structure in molecular sieves
making POSS an ideal building block for hybrid porous materials. The Piers-Rubinsztajn reaction catalyzed by B(C
6
F
5
)
3
avoids the use of expensive precious metal catalysis
which is difficult to completely remove during post-processing. The reaction proceeds under mild conditions and provides an easy route to the formation of Si―O―C linkage. Using the reaction
POSS based organic-inorganic hybrid porous materials were prepared by bonding propeller tetraphenylethylene (TPE) molecules with POSS. Nitrogen adsorption-desorption analysis and thermogravimetric analysis were performed on the hybrid material
which was found to have a combined structure of mesoporous and microporous
and good thermal stability
with a specific surface area of 582 m
2
/g and
T
d
of 463 ℃.
有机-无机杂化多孔材料多面体低聚倍半硅氧烷Piers-Rubinsztajn反应
Organic-inorganic hybrid porous materialsPolyhedral oligomeric silsesquioxanePiers-Rubinsztajn reaction
Goudar S. H.; Ingle D. S.; Sahu R.; Kotha S.; Reddy S. K.; Babu D. J.; Kotagiri V. R. Perylene diimide-containing dynamic hyper-crosslinked ionic porous organic polymers: modulation of assembly and gas storage. ACS Appl. Polym. Mater., 2023, 5(3), 2097-2104. doi:10.1021/acsapm.2c02102http://dx.doi.org/10.1021/acsapm.2c02102
Yang Y. E.; He Z. P.; Wang S. L.; Wang H. G.; Zhu G. S. Hyper-crosslinked polymer-derived nitrogen-doped hierarchical porous carbon as metal-free electrocatalysts for high-efficiency oxygen reduction. Energ. Fuel., 2021, 35(23), 19614-19623. doi:10.1021/acs.energyfuels.1c03087http://dx.doi.org/10.1021/acs.energyfuels.1c03087
Marken F.; Carta M.; McKeown N. B. Polymers of intrinsic microporosity in the design of electrochemical multicomponent and multiphase interfaces. Anal. Chem., 2021, 93(3), 1213-1220. doi:10.1021/acs.analchem.0c04554http://dx.doi.org/10.1021/acs.analchem.0c04554
Weng T. H.; Mohamed M. G.; Sharma S. U.; Chaganti S. V.; Samy M. M.; Lee J. T.; Kuo S. W. Ultrastable three-dimensional triptycene-and tetraphenylethene-conjugated microporous polymers for energy storage. ACS Appl. Energy Mater., 2022, 5(11), 14239-14249. doi:10.1021/acsaem.2c02809http://dx.doi.org/10.1021/acsaem.2c02809
Lee J., S M.; Cooper A. I. Advances in conjugated microporous polymers. Chem. Rev., 2020, 120(4), 2171-2214. doi:10.1021/acs.chemrev.9b00399http://dx.doi.org/10.1021/acs.chemrev.9b00399
Kim J.; Moisanu C. M.; Gannett C. N.; Halder A.; Fuentes-Rivera J. J.; Majer S. H.; Lancaster K. M.; Forse A. C.; Abruña H. D.; Milner P. J. Conjugated microporous polymers via solvent-free ionothermal cyclotrimerization of methyl ketones. Chem. Mater., 2021, 33(21), 8334-8342. doi:10.1021/acs.chemmater.1c02622http://dx.doi.org/10.1021/acs.chemmater.1c02622
Nabeela K.; Deka R.; Abbas Z.; Kumar P.; Saraf M.; Mobin S. M. Covalent organic frameworks (COFs)/MXenes heterostructures for electrochemical energy storage. Cryst. Growth Des., 2023, 23(5), 3057-3078. doi:10.1021/acs.cgd.3c00206http://dx.doi.org/10.1021/acs.cgd.3c00206
Dautzenberg E.; Li G. N.; de Smet L. C. P. M. Aromatic amine-functionalized covalent organic frameworks (COFs) for CO2/N2 separation. ACS Appl. Mater. Interfaces, 2023, 15(4), 5118-5127. doi:10.1021/acsami.2c17672http://dx.doi.org/10.1021/acsami.2c17672
Wang X. Y.; Shi X. S.; Wang Y. In situ growth of cationic covalent organic frameworks (COFs) for mixed matrix membranes with enhanced performances. Langmuir, 2020, 36(37), 10970-10978. doi:10.1021/acs.langmuir.0c01714http://dx.doi.org/10.1021/acs.langmuir.0c01714
Xiang K.; Li Y. M.; Xu C. H.; Li S. H. POSS-based organic-inorganic hybrid nanomaterials: aggregation-enhanced emission, and highly sensitive and selective detection of nitroaromatic explosives in aqueous media. J. Mater. Chem. C, 2016, 4(24), 5578-5583. doi:10.1039/c6tc01422dhttp://dx.doi.org/10.1039/c6tc01422d
Xiang K.; He L. J.; Li Y. M.; Xu C. H.; Li S. H. Dendritic AIE-active luminogens with a POSS core: synthesis, characterization, and application as chemosensors. RSC Adv., 2015, 5(118), 97224-97230. doi:10.1039/c5ra18152fhttp://dx.doi.org/10.1039/c5ra18152f
Harrison P. G.; Kannengiesser R. Porous materials derived from trigonal-prismatic [Si6O9] and cubane [Si8O12] monomerscage. Chem. Commun., 1996, (3), 415-416. doi:10.1039/cc9960000415http://dx.doi.org/10.1039/cc9960000415
Zhang C. X.; Babonneau F.; Bonhomme C.; Laine R. M.; Soles C. L.; Hristov H. A.; Yee A. F. Highly porous polyhedral silsesquioxane polymers. synthesis and characterization. J. Am. Chem. Soc., 1998, 120(33), 8380-8391. doi:10.1021/ja9808853http://dx.doi.org/10.1021/ja9808853
Morrison J. J.; Love C. J.; Manson B. W.; Shannon I. J.; Morris R. E. Synthesis of functionalised porous network silsesquioxane polymers. J. Mater. Chem., 2002, 12(11), 3208-3212. doi:10.1039/b204240ahttp://dx.doi.org/10.1039/b204240a
Normatov J.; Silverstein M. S. Highly porous elastomer-silsesquioxane nanocomposites synthesized within high internal phase emulsions. J. Polym. Sci. Poly. Chem., 2008, 46(7), 2357-2366. doi:10.1002/pola.22570http://dx.doi.org/10.1002/pola.22570
Nischang I.; Brüggemann O.; Teasdale I. Facile, single-step preparation of versatile, high-surface-area, hierarchically structured hybrid materials. Angew. Chem. Int. Ed., 2011, 123(20), 4688-4692. doi:10.1002/ange.201100971http://dx.doi.org/10.1002/ange.201100971
Wei Z. J.; Luo X.; Zhang L.; Luo M. M. POSS-based hybrid porous materials with exceptional hydrogen uptake at low pressure. Microporous Mesoporous Mater., 2014, 193, 35-39. doi:10.1016/j.micromeso.2014.03.010http://dx.doi.org/10.1016/j.micromeso.2014.03.010
Wang D. X.; Xue L.; Li L. G.; Deng B.; Feng S. Y.; Liu H. Z.; Zhao X. Rational design and synthesis of hybrid porous polymers derived from polyhedral oligomeric silsesquioxanes via Heck coupling reactions. Macromol. Rapid Commun., 2013, 34(10), 861-866. doi:10.1002/marc.201200835http://dx.doi.org/10.1002/marc.201200835
Wang D. X.; Yang W. Y.; Feng S. Y.; Liu H. Z. Amine post-functionalized POSS-based porous polymers exhibiting simultaneously enhanced porosity and carbon dioxide adsorption properties. RSC Adv., 2016, 6(17), 13749-13756. doi:10.1039/c5ra26617chttp://dx.doi.org/10.1039/c5ra26617c
Yang W. Y.; Jiang X. S.; Liu H. Z. A novel pH-responsive POSS-based nanoporous luminescent material derived from brominated distyrylpyridine and octavinylsilsesquioxane. RSC Adv., 2015, 5(17), 12800-12806. doi:10.1039/c4ra13628dhttp://dx.doi.org/10.1039/c4ra13628d
Sun L. B.; Liang Z. Q.; Yu J. H. Octavinylsilsesquioxane-based luminescent nanoporous inorganic-organic hybrid polymers constructed by the Heck coupling reaction. Polym. Chem., 2015, 6(6), 917-924. doi:10.1039/c4py01284dhttp://dx.doi.org/10.1039/c4py01284d
Chaikittisilp W.; Sugawara A.; Shimojima A.; Okubo T. Hybrid porous materials with high surface area derived from bromophenylethenyl-functionalized cubic siloxane-based building units. Chem. A Eur. J., 2010, 16(20), 6006-6014. doi:10.1002/chem.201000249http://dx.doi.org/10.1002/chem.201000249
Chaikittisilp W.; Sugawara A.; Shimojima A.; Okubo T. Microporous hybrid polymer with a certain crystallinity built from functionalized cubic siloxane cages as a singular building unit. Chem. Mater., 2010, 22(17), 4841-4843. doi:10.1021/cm1017882http://dx.doi.org/10.1021/cm1017882
Peng Y.; Ben T.; Xu J.; Xue M.; Jing X. F.; Deng F.; Qiu S. L.; Zhu G. S. A covalently-linked microporous organic-inorganic hybrid framework containing polyhedral oligomeric silsesquioxane moieties. Dalton Trans., 2011, 40(12), 2720-2724. doi:10.1039/c0dt01268hhttp://dx.doi.org/10.1039/c0dt01268h
Jing X. F.; Sun F. X.; Ren H.; Tian Y. Y.; Guo M. Y.; Li L. N.; Zhu G. S. Targeted synthesis of micro-mesoporous hybrid material derived from octaphenylsilsesquioxane building units. Micropor. Mesopor. Mater., 2013, 165, 92-98. doi:10.1016/j.micromeso.2012.07.048http://dx.doi.org/10.1016/j.micromeso.2012.07.048
Chaikittisilp W.; Kubo M.; Moteki T.; Sugawara-Narutaki A.; Shimojima A.; Okubo T. Porous siloxane-organic hybrid with ultrahigh surface area through simultaneous polymerization-destruction of functionalized cubic siloxane cages. J. Am. Chem. Soc., 2011, 133(35), 13832-13835. doi:10.1021/ja2046556http://dx.doi.org/10.1021/ja2046556
Wu Y.; Wang D. X.; Li L. G.; Yang W. Y.; Feng S. Y.; Liu H. Z. Hybrid porous polymers constructed from octavinylsilsesquioxane and benzene via Friedel-Crafts reaction: tunable porosity, gas sorption, and postfunctionalization. J. Mater. Chem. A, 2014, 2(7), 2160-2167. doi:10.1039/c3ta14746khttp://dx.doi.org/10.1039/c3ta14746k
Yang W. Y.; Wang D. X.; Li L. G.; Liu H. Z. Construction of hybrid porous materials from cubic octavinylsilsesquioxane through friedel-crafts reaction using tetraphenylsilane as a concentrative crosslinker. Eur. J. Inorg. Chem., 2014, 2014(18), 2976-2982. doi:10.1002/ejic.201402156http://dx.doi.org/10.1002/ejic.201402156
Liu G. L.; Wang Y. X.; Shen C. J.; Ju Z. F.; Yuan D. Q. A facile synthesis of microporous organic polymers for efficient gas storage and separation. J. Mater. Chem. A, 2015, 3(6), 3051-3058. doi:10.1039/c4ta05349dhttp://dx.doi.org/10.1039/c4ta05349d
Wang S. L.; Tan L. X.; Zhang C. X.; Hussain I.; Tan B. E. Novel POSS-based organic-inorganic hybrid porous materials by low cost strategies. J. Mater. Chem. A, 2015, 3(12), 6542-6548. doi:10.1039/c4ta06963chttp://dx.doi.org/10.1039/c4ta06963c
Ai L. Q.; Chen Y.; He L. J.; Luo Y. M.; Li S. H.; Xu C. H. Synthesis of structured polysiloxazanes via a Piers-Rubinsztajn reaction. Chem. Commun., 2019, 55(93), 14019-14022. doi:10.1039/c9cc07312dhttp://dx.doi.org/10.1039/c9cc07312d
0
浏览量
169
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构