浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
3.湖北航天化学技术研究所 航天化学动力技术重点实验室 襄阳 441003
E-mail: 13308672368@189.com
shihui-li@ciac.ac.cn
纸质出版日期:2024-02-20,
网络出版日期:2023-11-02,
收稿日期:2023-07-12,
录用日期:2023-08-29
移动端阅览
黄立贤, 桑丽鹏, 苏高攀, 郭翔, 李世辉. 羟基功能化3,4-聚2-芳基-1,3-丁二烯的合成. 高分子学报, 2024, 55(2), 153-160
Huang, L. X.; Sang, L. P.; Su, G. P.; Guo, X.; Li, S. H. Synthesis of hydroxyl-functionalized 3,4-poly(2-aryl-1,3-butadiene)s. Acta Polymerica Sinica, 2024, 55(2), 153-160
黄立贤, 桑丽鹏, 苏高攀, 郭翔, 李世辉. 羟基功能化3,4-聚2-芳基-1,3-丁二烯的合成. 高分子学报, 2024, 55(2), 153-160 DOI: 10.11777/j.issn1000-3304.2023.23185.
Huang, L. X.; Sang, L. P.; Su, G. P.; Guo, X.; Li, S. H. Synthesis of hydroxyl-functionalized 3,4-poly(2-aryl-1,3-butadiene)s. Acta Polymerica Sinica, 2024, 55(2), 153-160 DOI: 10.11777/j.issn1000-3304.2023.23185.
采用(C
13
H
8
CH
2
CH
2
(NCHCCHN)C
6
H
2
Me
3
-2
4
6)Lu(CH
2
SiMe
3
)
2
(
1
)、Ph
2
P(=NDip)(NDip)Lu(CH
2
SiMe
3
)
2
(THF) (Dip = C
6
H
3
-2
6-
i
Pr
2
;
2
)、Ph
2
P(=NDip)(NC
6
H
3
-2-Et)Lu(CH
2
SiMe
3
)
2
(THF) (
3
)和Ph
2
P(=NDip) (NC
6
H
3
-2-Et)Sc(CH
2
SiMe
3
)
2
(THF) (
4
) 4种稀土催化剂,催化2-对甲基苯基-1
3-丁二烯(2-MPBD)均聚合. 通过核磁共振(NMR)、凝胶渗透色谱(GPC)和示差扫描量热法(DSC)等对聚合物的微观结构和热性能进行了表征. 催化剂
1
对2-MPBD聚合活性低,3
4-选择性低(65.2%);催化剂
2
几乎无催化活性;催化剂
3
和
4
表现出非常高的催化活性(2 min转化率达100%)和3
4-选择性(分别为98.1%和
>
99%). 催化剂
4
对催化2-MPBD聚合具有活性聚合特征,产生的3
4-聚2-MPBD分子量随单体投入量呈线性增加,分子量分布介于1.12~1.25之间. 对于苯基、间甲基苯基、4-戊基苯基、4-氟苯基和4-氯苯基取代的1
3-丁二烯单体,催化剂
4
也表现出较高的催化活性和3
4-选择性. 3
4-聚芳基1
3-丁二烯侧链双键与硼烷、双氧水和氢氧化钠反应之后,转变为醇羟基功能化的3
4-聚芳基1
3-丁二烯.
The polymerization of 2-(4-methylphenyl)-1
3-butadiene (2-MPBD) is performed using [C
13
H
8
CH
2
CH
2
(NCHCCHN)C
6
H
2
Me
3
-2
4
6]Lu(CH
2
SiMe
3
)
2
(
1
)
Ph
2
P(=NDip)(NDip)Lu(CH
2
Si-Me
3
)
2
(THF) (Dip=C
6
H
3
-2
6-
i
Pr
2
;
2
)
Ph
2
P(=NDip)(NC
6
H
3
-2-Et)Lu(CH
2
SiMe
3
)
2
(THF) (
3
) and Ph
2
P(=NDip)(NC
6
H
3
-2-Et)Sc(CH
2
SiMe
3
)
2
(THF) (
4
). The microstructures and thermal properties of resultant polymers are characterized by nuclear magnetic resonance spectroscopy (
1
H-NMR
13
C-NMR)
gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). Complex
1
activated by [Ph
3
C][B(C
6
F
5
)
4
] and Al
i
Bu
3
shows low catalytic activity and 3
4-selectivity (65.2%) for 2-MPBD polymerization. Under the same conditions
complex
2
is nearly inert. In contrast
complexes
3
and
4
demonstrate high 3
4-selectivity (98.1% and
>
99%
respectively) and enable 100% conversion of 200 equivalents of 2-MPBD into polymers at 20 ℃ with 2 min. The resultant molecular weights increase with monomer-to-catalyst ratios varying from 200:1 to 600:1 with narrow molecular weight distributions of 1.12-1.25. Furthermore
complex
4
also shows high catalytic activity and high 3
4-selectivity for the polymerizations of 2-phenyl-1
3-butadiene
2-(3-methylphenyl)-1
3-butadiene
2-(4-pentylphenyl)-1
3-butadiene
2-(4-fluorophenyl)-1
3-butadiene and 2-(4-chlorophenyl)-1
3-butadiene. The resultant 3
4-poly(2-aryl-1
3-butadiene)s are readily transformed into hydroxyl functionalized polymers by the treatment of BH
3
and H
2
O
2
.
稀土催化剂功能化聚烯烃34-选择性共轭双烯反应性功能化法
Rare-earth metal catalystFunctional polyolefin34-SelectivityConjugated dieneReactive polyolefin intermediate
Franssen N. M. G.; Reek J. N. H.; de Bruin B. Synthesis of functional 'polyolefins': state of the art and remaining challenges. Chem. Soc. Rev., 2013, 42(13), 5809-5832. doi:10.1039/c3cs60032ghttp://dx.doi.org/10.1039/c3cs60032g
Chen C. L. Designing catalysts for olefin polymerization and copolymerization: beyond electronic and steric tuning. Nat. Rev. Chem., 2018, 2(5), 6-14. doi:10.1038/s41570-018-0003-0http://dx.doi.org/10.1038/s41570-018-0003-0
崔冬梅. 稀土催化极性单体配位均聚及与非极性单体共聚合的研究. 高分子学报, 2020, 51(1), 12-29. doi:10.11777/j.issn1000-3304.2020.19142http://dx.doi.org/10.11777/j.issn1000-3304.2020.19142
简忠保. 功能化聚烯烃合成: 从催化剂到极性单体设计. 高分子学报, 2018, (11), 1359-1371. doi:10.11777/j.issn1000-3304.2018.18146http://dx.doi.org/10.11777/j.issn1000-3304.2018.18146
洪浩群, 何慧, 贾德民, 丁超, 徐焕翔. 聚烯烃功能化的研究进展. 高分子材料科学与工程. 2006, 22(6), 23-27. doi:10.3321/j.issn:1000-7555.2006.06.006http://dx.doi.org/10.3321/j.issn:1000-7555.2006.06.006
Chen M.; Chen C. L. Nickel catalysts for the preparation of functionalized polyolefin materials. Chin. Sci. Bull., 2022, 67(17), 1881-1894. doi:10.1360/tb-2021-1187http://dx.doi.org/10.1360/tb-2021-1187
Li Y. Q.; Wang F.; Cao Y. C. Late transition metal complexes for olefin copolymerization with polar monomers. Chin. J. Org. Chem., 2021, 41(4), 1396. doi:10.6023/cjoc202009008http://dx.doi.org/10.6023/cjoc202009008
Jiang Y.; Zhang Z.; Jiang H. Q.; Wang Q. Y.; Li S. H.; Cui D. M. Polar group-promoted copolymerization of ethylene with polar olefins. Macromolecules, 2023, 56(4), 1547-1553. doi:10.1021/acs.macromol.2c02155http://dx.doi.org/10.1021/acs.macromol.2c02155
商睿凝, 高欢, 李玉莲, 王彬, 马哲, 潘莉, 李悦生. 咔唑功能化等规聚丙烯的合成及性能研究. 高分子学报. 2019, 50(11), 1187-1195. doi:10.11777/j.issn1000-3304.2019.19081http://dx.doi.org/10.11777/j.issn1000-3304.2019.19081
Zhang Z.; Jiang Y.; Lei R.; Zhang Y. F.; Li S. H.; Cui D. M. Proximity-driven synergic copolymerization of ethylene and polar monomers. Macromolecules, 2023, 56(6), 2476-2483. doi:10.1021/acs.macromol.2c02337http://dx.doi.org/10.1021/acs.macromol.2c02337
Li S. H.; Liu D. T.; Wang Z. C.; Cui D. M. Development of group 3 catalysts for alternating copolymerization of ethylene and styrene derivatives. ACS Catal., 2018, 8(7), 6086-6093. doi:10.1021/acscatal.8b00885http://dx.doi.org/10.1021/acscatal.8b00885
Shang R. N.; Gao H. A.; Luo F. L.; Li Y. L.; Wang B.; Ma Z.; Pan L.; Li Y. S. Functional isotactic polypropylenes via efficient direct copolymerizations of propylene with various amino-functionalized α-olefins. Macromolecules, 2019, 52(23), 9280-9290. doi:10.1021/acs.macromol.9b00757http://dx.doi.org/10.1021/acs.macromol.9b00757
Zhang Y. P.; Mu H. L.; Pan L.; Wang X. L.; Li Y. S. Robust bulky[P,O]neutral nickel catalysts for copolymerization of ethylene with polar vinyl monomers. ACS Catal., 2018, 8(7), 5963-5976. doi:10.1021/acscatal.8b01088http://dx.doi.org/10.1021/acscatal.8b01088
Berkefeld A.; Drexler M.; Möller H. M.; Mecking S. Mechanistic insights on the copolymerization of polar vinyl monomers with neutral Ni(II) catalysts. J. Am. Chem. Soc., 2009, 131(35), 12613-12622. doi:10.1021/ja901360bhttp://dx.doi.org/10.1021/ja901360b
Jian Z. B.; Mecking S. Insertion homo- and copolymerization of diallyl ether. Angew. Chem. Int. Ed., 2015, 54(52), 15845-15849. doi:10.1002/anie.201508930http://dx.doi.org/10.1002/anie.201508930
Nakamura A.; Ito S.; Nozaki K. Coordination-insertion copolymerization of fundamental polar monomers. Chem. Rev., 2009, 109(11), 5215-5244. doi:10.1021/cr900079rhttp://dx.doi.org/10.1021/cr900079r
Kermagoret A.; Debuigne A.; Jérôme C.; Detrembleur C. Precision design of ethylene- and polar-monomer-based copolymers by organometallic-mediated radical polymerization. Nat. Chem., 2014, 6(3), 179-187. doi:10.1038/nchem.1850http://dx.doi.org/10.1038/nchem.1850
Mike Chung, T. C. Functional polyolefins: synthesis and energy storage applications. In: Kaminsky, W., ed. Advances in Polymer Science. Berlin, Heidelberg: Springer, 2013. 233-278. doi:10.1007/12_2013_209http://dx.doi.org/10.1007/12_2013_209
Chung T. C.; Rhubright D. Synthesis of functionalized polypropylene. Macromolecules, 1991, 24(4), 970-972. doi:10.1021/ma00004a026http://dx.doi.org/10.1021/ma00004a026
Wang X. Y.; Wang Y. X.; Shi X. C.; Liu J. Y.; Chen C. L.; Li Y. S. Syntheses of well-defined functional isotactic polypropylenes via efficient copolymerization of propylene with ω-halo-α-alkenes by post-metallocene hafnium catalyst. Macromolecules, 2014, 47(2), 552-559. doi:10.1021/ma4022696http://dx.doi.org/10.1021/ma4022696
Mike Chung T. C. Functional polyolefins for energy applications. Macromolecules, 2013, 46(17), 6671-6698. doi:10.1021/ma401244thttp://dx.doi.org/10.1021/ma401244t
Nomura K.; Liu J. Y.; Fujiki M.; Takemoto A. Facile, efficient functionalization of polyolefins via controlled incorporation of terminal olefins by repeated 1,7-octadiene insertion. J. Am. Chem. Soc., 2007, 129(46), 14170-14171. doi:10.1021/ja076633whttp://dx.doi.org/10.1021/ja076633w
Zhang D. G.; Pan L.; Li Y. G.; Wang B.; Li Y. S. Synthesis and reaction of anthracene-containing polypropylene: a promising strategy for facile, efficient functionalization of isotactic polypropylene. Macromolecules, 2017, 50(6), 2276-2283. doi:10.1021/acs.macromol.6b02550http://dx.doi.org/10.1021/acs.macromol.6b02550
Zhang Z.; Dou Y. L.; Cai Z. Y.; Liu D. T.; Li S. H.; Cui D. M. Syndioselective coordination (co)polymerization of alkyne-substituted styrenes using rare-earth metal catalysts. Macromolecules, 2020, 53(14), 5895-5902. doi:10.1021/acs.macromol.0c01237http://dx.doi.org/10.1021/acs.macromol.0c01237
Zhang Z.; Dou Y. L.; Li S. H.; Cui D. M. Highly syndioselective coordination (co)polymerization of isopropenylstyrene. Polym. Chem., 2018, 9(35), 4476-4482. doi:10.1039/c8py00625chttp://dx.doi.org/10.1039/c8py00625c
Li S. H.; Wang M. Y.; Cui D. M. Copolymerization of ethylene with styrene catalyzed by a scandium catalyst. Polym. Chem., 2018, 9(38), 4757-4763. doi:10.1039/c8py00889bhttp://dx.doi.org/10.1039/c8py00889b
Li L.; Li S. H.; Cui D. M. Highly cis-1,4-selective living polymerization of 3-methylenehepta-1,6-diene and its subsequent thiol-ene reaction: an efficient approach to functionalized diene-based elastomer. Macromolecules, 2016, 49(4), 1242-1251. doi:10.1021/acs.macromol.5b02654http://dx.doi.org/10.1021/acs.macromol.5b02654
Li L.; Li S. H.; Cui D. M. Chemo- and stereoselective polymerization of 3-methylenehepta-1,6-diene and its thiol-ene modification. J. Polym. Sci. A Poly. Chem., 2017, 55(6), 1031-1039. doi:10.1002/pola.28463http://dx.doi.org/10.1002/pola.28463
Huang J. M.; Jiang Y.; Zhang Z.; Li S. H.; Cui D. M. Stereoselective polymerization of an aromatic vinyl monomer to access highly syndiotactic poly(vinyl alcohol). Macromol. Rapid Commun., 2020, 41(10), 2000038. doi:10.1002/marc.202000038http://dx.doi.org/10.1002/marc.202000038
Jiang Y.; Zhang Z.; Li S. H.; Cui D. M. Coordination polymerization of renewable (E)-4,8-dimethyl-1,3,7-nonatriene by rare-earth metal catalysts. Chinese J. Chem., 2022, 40(16), 1939-1944. doi:10.1002/cjoc.202200140http://dx.doi.org/10.1002/cjoc.202200140
Zhong Y. H.; Douair I.; Wang T. T.; Wu C. J.; Maron L.; Cui D. M. Access to hydroxy-functionalized polypropylene through coordination polymerization. Angew. Chem. Int. Ed., 2020, 59(12), 4947-4952. doi:10.1002/anie.201914747http://dx.doi.org/10.1002/anie.201914747
ten Brummelhuis N.; Diehl C.; Schlaad H. Thiol-ene modification of 1,2-polybutadiene using UV light or sunlight. Macromolecules, 2008, 41(24), 9946-9947. doi:10.1021/ma802047whttp://dx.doi.org/10.1021/ma802047w
Ren X. R.; Guo F.; Fu H. R.; Song Y. Y.; Li Y.; Hou Z. M. Scandium-catalyzed copolymerization of myrcene with ethylene and propylene: convenient syntheses of versatile functionalized polyolefins. Polym. Chem., 2018, 9(10), 1223-1233. doi:10.1039/c8py00039ehttp://dx.doi.org/10.1039/c8py00039e
Sun H. Y.; Guo H.; Zhao Z. P.; Wang Z. R.; Guo F. Synthesis and properties of sulfonated ethylene-conjugated alkene copolymers for high-performance proton exchange membranes. ACS Appl. Eng. Mater., 2023, 1(5), 1436-1445. doi:10.1021/acsaenm.3c00121http://dx.doi.org/10.1021/acsaenm.3c00121
林秀崇, 王胤然, 姜磊, 郭方. 含"Si―H"基团聚乙烯的合成及功能化研究. 高分子学报, 2020, 51(7), 771-776. doi:10.11777/j.issn1000-3304.2020.20023http://dx.doi.org/10.11777/j.issn1000-3304.2020.20023
Chien J. C. W.; Llinas G. H.; Rausch M. D.; Lin G. Y.; Winter H. H.; Atwood J. L.; Bott S. G. Two-state propagation mechanism for propylene polymerization catalyzed by rac-[anti-ethylidene(1-.eta.5-tetramethylcyclopentadienyl)(1-η5-indenyl)] dimethyltitanium. J. Am. Chem. Soc., 1991, 113(22), 8569-8570. doi:10.1021/ja00022a080http://dx.doi.org/10.1021/ja00022a080
Wang B. L.; Cui D. M.; Lv K. Highly 3, 4-selective living polymerization of isoprene with rare earth metal fluorenyl N-heterocyclic carbene precursors. Macromolecules, 2008, 41(6), 1983-1988. doi:10.1021/ma702505nhttp://dx.doi.org/10.1021/ma702505n
Liu B.; Li L.; Sun G. P.; Liu J. Y.; Wang M. Y.; Li S. H.; Cui D. M. 3,4-Polymerization of isoprene by using NSN- and NPN-ligated rare earth metal precursors: switching of stereo selectivity and mechanism. Macromolecules, 2014, 47(15), 4971-4978. doi:10.1021/ma501085chttp://dx.doi.org/10.1021/ma501085c
Li S. H.; Cui D. M.; Li D. F.; Hou Z. M. Highly 3,4-selective polymerization of isoprene with NPN ligand stabilized rare-earth metal bis(alkyl)s. Organometallics, 2009, 28(16), 4814-4822. doi:10.1021/om900261nhttp://dx.doi.org/10.1021/om900261n
Yao C. G.; Xie H. Y.; Cui D. M. Highly 3, 4-selective living polymerization of 2-phenyl-1,3-butadiene with amidino N-heterocyclic carbene ligated rare-earth metal bis(alkyl) complexes. RSC Adv., 2015, 5(113), 93507-93512. doi:10.1039/c5ra18713chttp://dx.doi.org/10.1039/c5ra18713c
Huang J. M.; Yao C. G.; Li S. H.; Cui D. M. Yttrium-catalyzed cis-1,4-selective polymerization of 2-(4-halophenyl)-1, 3-butadienes and their copolymerization with isoprene. Chinese J. Polym. Sci., 2021, 39(3), 309-315. doi:10.1007/s10118-021-2505-3http://dx.doi.org/10.1007/s10118-021-2505-3
Yao C. G.; Liu N.; Long S. Y.; Wu C. J.; Cui D. M. Highly cis-1,4-selective coordination polymerization of polar 2-(4-methoxyphenyl)-1,3-butadiene and copolymerization with isoprene using a β-diketiminato yttrium bis(alkyl) complex. Polym. Chem., 2016, 7(6), 1264-1270. doi:10.1039/c5py01801chttp://dx.doi.org/10.1039/c5py01801c
Li S. H.; Miao W.; Tang T.; Dong W. M.; Zhang X. Q.; Cui D. M. New rare earth metal bis(alkyl)s bearing an iminophosphonamido ligand. synthesis and catalysis toward highly 3,4-selective polymerization of isoprene. Organometallics, 2008, 27(4), 718-725. doi:10.1021/om700945rhttp://dx.doi.org/10.1021/om700945r
Liu B.; Han B. Y.; Zhang C. L.; Li S. H.; Sun G. P.; Cui D. M. Renewable β-myrcene polymerization initiated by lutetium alkyl complexes ligated by imidophosphonamido ligand. Chinese J. Polym. Sci., 2015, 33(5), 792-796. doi:10.1007/s10118-015-1629-8http://dx.doi.org/10.1007/s10118-015-1629-8
Liu D. T.; Wang M. Y.; Wang Z. C.; Wu C. J.; Pan Y. P.; Cui D. M. Stereoselective copolymerization of unprotected polar and nonpolar styrenes by an yttrium precursor: control of polar-group distribution and mechanism. Angew. Chem. Int. Ed., 2017, 56(10), 2714-2719. doi:10.1002/anie.201611066http://dx.doi.org/10.1002/anie.201611066
0
浏览量
197
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构