浏览全部资源
扫码关注微信
青岛科技大学 橡塑材料与工程教育部重点实验室 青岛 266042
E-mail: dyx@qust.edu.cn
纸质出版日期:2024-01-20,
网络出版日期:2023-11-22,
收稿日期:2023-07-13,
录用日期:2023-08-25
移动端阅览
胡洁, 冯振东, 段咏欣. CaCl2/H2O2引发木质素接枝天然橡胶的制备及其应用研究. 高分子学报, 2024, 55(1), 120-128
Hu, J.; Feng, Z. D.; Duan, Y. X. Preparation and application of lignin grafted natural rubber initiated by CaCl2/H2O2. Acta Polymerica Sinica, 2024, 55(1), 120-128
胡洁, 冯振东, 段咏欣. CaCl2/H2O2引发木质素接枝天然橡胶的制备及其应用研究. 高分子学报, 2024, 55(1), 120-128 DOI: 10.11777/j.issn1000-3304.2023.23186.
Hu, J.; Feng, Z. D.; Duan, Y. X. Preparation and application of lignin grafted natural rubber initiated by CaCl2/H2O2. Acta Polymerica Sinica, 2024, 55(1), 120-128 DOI: 10.11777/j.issn1000-3304.2023.23186.
添加增容剂是改善极性木质素(LN)与非极性橡胶相容性差的有效措施之一,有助于提高LN补强效果. 本文中采用CaCl
2
/H
2
O
2
作为自由基引发体系制备了LN接枝的天然橡胶(LGN),并将其用于天然橡胶(NR)/LN复合材料的界面增容. 研究表明,CaCl
2
/H
2
O
2
不但可以引发LN产生大分子自由基,而且会氧化NR双键断裂生成不饱和酮,使NR分子量降低. 对接枝过程中加料顺序进行调控,采用CaCl
2
/H
2
O
2
先处理LN,不但可以有效地减轻NR的氧化降解,而且有助于LN产生更多的大分子自由基.采用傅里叶变换红外光谱(FTIR)对LN、NR和LGN化学结构的表征表明:LN接枝NR的机理为LN的酚羟基自由基与NR的甲基反应形成C―O―C键. 得益于LGN优异的界面增容作用,增容后的NR/LN复合材料的拉伸强度和撕裂强度较增容前分别提高了14.3%和7.5%.
Adding compatibilizers is one of the effective ways to improve the poor compatibility between polar lignin (LN) and non-polar rubber
which helps to improve the reinforcing effect of LN. Herein
LN grafted natural rubber (LGN) was prepared using CaCl
2
/H
2
O
2
as the radical initiating system
which acted as the compatibilizer for the natural rubber (NR)/LN composites. Detailed researches show that CaCl
2
/H
2
O
2
can not only initiate LN to produce macromolecular free radicals
but also oxidize the double bonds of NR into unsaturated ketones which reduces the molecular weight of NR. Adjusting the feeding order in the grafting process and using CaCl
2
/H
2
O
2
to treat LN first are helpful to reduce the oxidative degradation of NR and produce more LN macromolecular free radicals. The mechanism of LN grafted NR was explored by the Fourier transform infrared spectroscopy (FTIR) characterization of LN
NR and LGN
that is
the phenol hydroxyl radicals of LN reacted with the methyl groups of NR to form C―O―C bond. Benefiting from the excellent interfacial compatibilization of LGN
the tensile strength and tear strength of NR/LN composite after compatibilization increased by 14.3% and 7.5%
respectively
compared to those before compatibilization. This work provides a new way for preparing the compatibilizer of NR/LN composite
which is of great significance to promote the application of LN in the rubber industry.
木质素天然橡胶CaCl2/H2O2接枝增容剂复合材料
LigninNatural rubberCaCl2/H2O2GraftCompatibilizerComposites
Stöckelhuber K. W.; Svistkov A. S.; Pelevin A. G.; Heinrich G. Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites. Macromolecules, 2011, 44(11), 4366-4381. doi:surface modificationhttp://dx.doi.org/surface modification
Chang B. P.; Gupta A.; Muthuraj R.; Mekonnen T. H. Bioresourced fillers for rubber composite sustainability: current development and future opportunities. Green Chem., 2021, 23(15), 5337-5378. doi:10.1039/d1gc01115dhttp://dx.doi.org/10.1039/d1gc01115d
Österberg M.; Sipponen M. H.; Mattos B. D.; Rojas O. J. Spherical lignin particles: a review on their sustainability and applications. Green Chem., 2020, 22(9), 2712-2733. doi:10.1039/d0gc00096ehttp://dx.doi.org/10.1039/d0gc00096e
Roy K.; Debnath S. C.; Potiyaraj P. A review on recent trends and future prospects of lignin based green rubber composites. J. Polym. Environ., 2020, 28(2), 367-387. doi:10.1007/s10924-019-01626-5http://dx.doi.org/10.1007/s10924-019-01626-5
Setua D. K.; Shukla M. K.; Nigam V.; Singh H.; Mathur G. N. Lignin reinforced rubber composites. Polym. Compos., 2000, 21(6), 988-995. doi:10.1002/pc.10252http://dx.doi.org/10.1002/pc.10252
Jiang C.; Shen H. H.; Bi X. Y.; Wang Z. H.; Yao M. Z.; Wu Y. G.; Zhang L. Q.; Yu P. A green dual-phase carbon-silica nanohybrid derived from black liquor lignin for reinforcing styrene-butadiene rubber. Compos. Sci. Technol., 2022, 230, 109775. doi:10.1016/j.compscitech.2022.109775http://dx.doi.org/10.1016/j.compscitech.2022.109775
He Z. Y.; Li Y. X.; Liu C.; Yang J.; Qian M. M.; Zhu Y. C.; Wang X. F. Turning lignin into treasure: an innovative filler comparable to commercial carbon black for the green development of the rubber industry. Int. J. Biol. Macromol., 2022, 218, 891-899. doi:10.1016/j.ijbiomac.2022.07.190http://dx.doi.org/10.1016/j.ijbiomac.2022.07.190
Mohamad Aini N. A.; Othman N.; Hussin M. H.; Sahakaro K.; Hayeemasae N. Efficiency of interaction between hybrid fillers carbon black/lignin with various rubber-based compatibilizer, epoxidized natural rubber, and liquid butadiene rubber in NR/BR composites: mechanical, flexibility and dynamical properties. Ind. Crops Prod., 2022, 185, 115167. doi:10.1016/j.indcrop.2022.115167http://dx.doi.org/10.1016/j.indcrop.2022.115167
Tomazi R. C.; Guerra N. B.; Giovanela M.; Moresco S.; da Silva Crespo J. Evaluation of vulcanization systems in natural rubber elastomeric tire sidewall compositions with lignin as a stabilizing agent. Polym. Bull., 2023, 80(8), 8977-8994. doi:10.1007/s00289-022-04485-8http://dx.doi.org/10.1007/s00289-022-04485-8
Mardiyati Y.; Fauza A. N.; Rachman O. A.; Steven S.; Santosa S. P. A silica-lignin hybrid filler in a natural rubber foam composite as a green oil spill absorbent. Polymers, 2022, 14(14), 2930. doi:10.3390/polym14142930http://dx.doi.org/10.3390/polym14142930
孙勇, 张金平, 杨刚, 李佐虎. 玉米秸秆木质素氧化与改性的研究. 光谱学与光谱分析, 2007, 27(10), 1997-2000.
Zong E. M.; Liu X. H.; Liu L. N.; Wang J. F.; Song P. G.; Ma Z. Q.; Ding J. E.; Fu S. Y. Graft polymerization of acrylic monomers onto lignin with CaCl2-H2O2 initiatoras: preparation, mechanism, characterization, and application in poly(lactic acid). ACS Sustainable Chem. Eng., 2018, 6(1), 337-348. doi:10.1021/acssuschemeng.7b02599http://dx.doi.org/10.1021/acssuschemeng.7b02599
Meister J. J.; Chen M. J. Graft 1-phenylethylene copolymers of lignin. 1. Synthesis and proof of copolymerization. Macromolecules, 1991, 24(26), 6843-6848. doi:10.1021/ma00026a007http://dx.doi.org/10.1021/ma00026a007
Liu X. H.; Xu Y. Z.; Yu J.; Li S. H.; Wang J. F.; Wang C. P.; Chu F. X. Integration of lignin and acrylic monomers towards grafted copolymers by free radical polymerization. Int. J. Biol. Macromol., 2014, 67, 483-489. doi:10.1016/j.ijbiomac.2014.04.005http://dx.doi.org/10.1016/j.ijbiomac.2014.04.005
Rooshenass P.; Yahya R.; Gan S. N. Comparison of three different degradation methods to produce liquid epoxidized natural rubber. Rubber Chem. Technol., 2016, 89(1), 177-198. doi:10.5254/rct.15.84878http://dx.doi.org/10.5254/rct.15.84878
徐加勇, 马小鹏, 袁玉虎. 无机填料对丁腈橡胶性能的影响. 特种橡胶制品, 2012, 33(2), 39-41. doi:10.3969/j.issn.1005-4030.2012.02.010http://dx.doi.org/10.3969/j.issn.1005-4030.2012.02.010
Hu Y. Z.; Yan L.; Zhao X. L.; Wang C. G.; Li S.; Zhang X. H.; Ma L. L.; Zhang Q. Mild selective oxidative cleavage of lignin C―C bonds over a copper catalyst in water. Green Chem., 2021, 23(18), 7030-7040. doi:10.1039/d1gc02102hhttp://dx.doi.org/10.1039/d1gc02102h
Panesar S. S.; Jacob S.; Misra M.; Mohanty A. K. Functionalization of lignin: fundamental studies on aqueous graft copolymerization with vinyl acetate. Ind. Crops Prod., 2013, 46, 191-196. doi:10.1016/j.indcrop.2012.12.031http://dx.doi.org/10.1016/j.indcrop.2012.12.031
Ye D. Z.; Jiang L.; Ma C.; Zhang M. H.; Zhang X. The graft polymers from different species of lignin and acrylic acid: synthesis and mechanism study. Int. J. Biol. Macromol., 2014, 63, 43-48. doi:10.1016/j.ijbiomac.2013.09.024http://dx.doi.org/10.1016/j.ijbiomac.2013.09.024
Oruganti R. K.; Gungupalli M. P.; Bhattacharyya D. Alkaline hydrolysis for yield of glucose and kraft lignin from de-oiled Jatropha curcas waste: multiresponse optimization using response surface methodology. Biomass Convers. Biorefin., 2022. 1-19. doi:10.1007/s13399-022-03204-7http://dx.doi.org/10.1007/s13399-022-03204-7
0
浏览量
190
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构