浏览全部资源
扫码关注微信
1.北京航空航天大学化学学院 北京 100191
2.北京机械设备研究所脑-机一体技术中心 北京 100584
3.北京航空航天大学国际交叉科学研究院 北京 100191
E-mail: chenlie@buaa.edu.cn
liumj@buaa.edu.cn
纸质出版日期:2024-01-20,
网络出版日期:2023-11-10,
收稿日期:2023-07-21,
录用日期:2023-09-21
移动端阅览
周杭生, 黄金, 陈列, 刘明杰. 双重热响应离子凝胶的构筑及相行为研究. 高分子学报, 2024, 55(1), 108-119
Zhou, H. S.; Huang, J.; Chen, L.; Liu, M. J. Preparation and phase behavior of doubly thermo-responsive ionogels. Acta Polymerica Sinica, 2024, 55(1), 108-119
周杭生, 黄金, 陈列, 刘明杰. 双重热响应离子凝胶的构筑及相行为研究. 高分子学报, 2024, 55(1), 108-119 DOI: 10.11777/j.issn1000-3304.2023.23192.
Zhou, H. S.; Huang, J.; Chen, L.; Liu, M. J. Preparation and phase behavior of doubly thermo-responsive ionogels. Acta Polymerica Sinica, 2024, 55(1), 108-119 DOI: 10.11777/j.issn1000-3304.2023.23192.
传统热响应凝胶体系受限于响应机制单一以及响应温度可调性差等问题,难以满足复杂场景中对智能凝胶材料的需求. 本文中提出了一种构筑双重热响应离子凝胶的简易策略,通过将改性的半晶型聚乙二醇(PEG)在离子液体(IL)中交联聚合,成功制备出兼具上临界互溶温度(UCST)以及下临界互溶温度(LCST)相行为的双重热响应离子凝胶. 其中离子凝胶的UCST相行为基于PEG结晶熔融;而LCST相行为则是由温度影响PEG与IL之间的氢键变化所产生. 此外,通过改变高分子含量、聚合物链长和离子液体中阳离子侧链长度,可以实现离子凝胶2种机制下热响应温度的大范围连续调控. 同时离子凝胶的热响应相转变伴随着多种物化性质的变化,如光学透过率、机械强度(3.6~0.1 MPa)以及离子电导率. 离子凝胶的上述特性使其在智能显示、可穿戴设备以及柔性传感器等领域发挥重要应用.
Traditional intelligent thermal-responsive gel system is limited by the single response mechanism and poor tunable response temperature
and it is difficult to meet the demand of intelligent gel materials in complex scenes. In this study
a simple strategy for the construction of doubly thermo-responsive ionogels is proposed. By crosslinking modified semi-crystalline poly(ethylene glycol) (PEG) in ionic liquid (IL)
the doubly thermo-responsive ionogel with both upper critical solution temperature (UCST) and lower critical solution temperature (LCST) phase behaviors are successfully prepared. The UCST phase behavior of ionogel is based on the melting of PEG crystalline. And the LCST phase behavior is caused by the change of hydrogen bond between PEG and IL affected by temperature. In addition
by adjusting the content of binary components
the polymer chain length and the type of ionic liquid
the thermo-responsive temperature of ionogel can be continuously controlled in a large range under these two phase-behavior mechanisms. The phase transition of ionogel is accompanied by a variety of physical and chemical properties
such as optical transmittance
mechanical properties (3.6‒0.1 MPa) and ionic conductivity. The special characteristics of ionogel make it play a significant role in the fields of smart display
wearable device and flexible sensor.
双重热响应上临界互溶温度下临界互溶温度高分子凝胶离子液体
Doubly thermo-responsiveUpper critical solution temperatureLower critical solution temperaturePolymer gelIonic liquid
Stuart M. A. C.; Huck W. T. S.; Genzer J.; Müller M.; Ober C.; Stamm M.; Sukhorukov G. B.; Szleifer I.; Tsukruk V. V.; Urban M.; Winnik F.; Zauscher S.; Luzinov I.; Minko S. Emerging applications of stimuli-responsive polymer materials. Nat. Mater., 2010, 9(2), 101-113. doi:10.1038/nmat2614http://dx.doi.org/10.1038/nmat2614
Li W. J.; Guan Q. W.; Li M.; Saiz E.; Hou X. Nature-inspired strategies for the synthesis of hydrogel actuators and their applications. Prog. Polym. Sci., 2023, 140, 101665. doi:10.1016/j.progpolymsci.2023.101665http://dx.doi.org/10.1016/j.progpolymsci.2023.101665
王龙海, 洪春雁. 响应性支化聚合物的合成、组装及其生物医药应用. 高分子学报, 2017, (2), 200-213. doi:10.11777/j.issn1000-3304.2017.16305http://dx.doi.org/10.11777/j.issn1000-3304.2017.16305
Duan J. J.; Zhang L. N. Robust and smart hydrogels based on natural polymers. Chinese J. Polym. Sci., 2017, 35(10), 1165-1180. doi:10.1007/s10118-017-1983-9http://dx.doi.org/10.1007/s10118-017-1983-9
Yang H.; Leow W. R.; Chen X. D. Thermal-responsive polymers for enhancing safety of electrochemical storage devices. Adv. Mater., 2018, 30(13), e1704347. doi:10.1002/adma.201704347http://dx.doi.org/10.1002/adma.201704347
Hua L. Q.; Zhao C. Z.; Guan X.; Lu J. L.; Zhang J. W. Cold-induced shape memory hydrogels for strong and programmable artificial muscles. Sci. China Mater., 2022, 65(8), 2274-2280. doi:10.1007/s40843-021-1971-9http://dx.doi.org/10.1007/s40843-021-1971-9
Lee H. N.; Bai Z. F.; Newell N.; Lodge T. P. Micelle/inverse micelle self-assembly of a PEO-PNIPAm block copolymer in ionic liquids with double thermoresponsivity. Macromolecules, 2010, 43(22), 9522-9528. doi:10.1021/ma1019279http://dx.doi.org/10.1021/ma1019279
Yin C.; Wei F. N.; Fu S. H.; Zhai Z. S.; Ge Z. X.; Yao L. G.; Jiang M. L.; Liu M. Visible light-driven jellyfish-like miniature swimming soft robot. ACS Appl. Mater. Interfaces, 2021, 13(39), 47147-47154. doi:10.1021/acsami.1c13975http://dx.doi.org/10.1021/acsami.1c13975
Lei Z. Y.; Wu P. Y. Zwitterionic skins with a wide scope of customizable functionalities. ACS Nano, 2018, 12(12), 12860-12868. doi:10.1021/acsnano.8b08062http://dx.doi.org/10.1021/acsnano.8b08062
Lin Q. Y.; Owh C.; Lim J. Y. C.; Chee P. L.; Yew M. P. Y.; Hor E. T. Y.; Loh X. J. The thermogel chronicle—from rational design of thermogelling copolymers to advanced thermogel applications. Acc. Mater. Res., 2021, 2(10), 881-894. doi:10.1021/accountsmr.1c00128http://dx.doi.org/10.1021/accountsmr.1c00128
Chen L. E.; Zhao C.; Duan X. Z.; Zhou J. J.; Liu M. J. Finely tuning the lower critical solution temperature of ionogels by regulating the polarity of polymer networks and ionic liquids. CCS Chem., 2022, 4(4), 1386-1396. doi:10.31635/ccschem.021.202100855http://dx.doi.org/10.31635/ccschem.021.202100855
Zhang L.; Jiang D. W.; Dong T. H.; Das R.; Pan D.; Sun C. Y.; Wu Z. J.; Zhang Q. B.; Liu C. T.; Guo Z. H. Overview of ionogels in flexible electronics. Chem. Rec., 2020, 20(9), 948-967. doi:10.1002/tcr.202000041http://dx.doi.org/10.1002/tcr.202000041
Li S. H.; Li Y. X.; Wang Y. T.; Pan H. Y.; Sun J. Q. Highly stretchable, elastic, healable, and ultra-durable polyvinyl alcohol-based ionic conductors capable of safe disposal. CCS Chem., 2022, 4(9), 3170-3180. doi:10.31635/ccschem.021.202101360http://dx.doi.org/10.31635/ccschem.021.202101360
Chen L.; Huang J.; Zhao C.; Zhou J. J.; Liu M. J. Tunable lower critical solution temperature of poly(butyl acrylate) in ionic liquid blends. Chinese J. Polym. Sci., 2021, 39(5), 585-591. doi:10.1007/s10118-021-2522-2http://dx.doi.org/10.1007/s10118-021-2522-2
Lee H. Y.; Cai Y. F.; Velioglu S.; Mu C. Z.; Chang C. J.; Chen Y. L.; Song Y. J.; Chew J. W.; Hu X. M. Thermochromic ionogel: a new class of stimuli responsive materials with super cyclic stability for solar modulation. Chem. Mater., 2017, 29(16), 6947-6955. doi:10.1021/acs.chemmater.7b02402http://dx.doi.org/10.1021/acs.chemmater.7b02402
Jiang N.; Chang X. H.; Hu D. W.; Chen L. R.; Wang Y. P.; Chen J. W.; Zhu Y. T. Flexible, transparent, and antibacterial ionogels toward highly sensitive strain and temperature sensors. Chem. Eng. J., 2021, 424, 130418. doi:10.1016/j.cej.2021.130418http://dx.doi.org/10.1016/j.cej.2021.130418
Mahato M.; Murakami Y.; Das S. K. Recent advances and applications of ionic liquids-based photonic materials. Appl. Mater. Today, 2023, 32, 101808. doi:10.1016/j.apmt.2023.101808http://dx.doi.org/10.1016/j.apmt.2023.101808
Kim Y. M.; Choi W. Y.; Kwon J. H.; Lee J. K.; Moon H. C. Functional ion gels: versatile electrolyte platforms for electrochemical applications. Chem. Mater., 2021, 33(8), 2683-2705. doi:10.1021/acs.chemmater.1c00330http://dx.doi.org/10.1021/acs.chemmater.1c00330
Morimoto N.; Yamamoto M. Design of an LCST-UCST-like thermoresponsive zwitterionic copolymer. Langmuir, 2021, 37(11), 3261-3269. doi:10.1021/acs.langmuir.0c03128http://dx.doi.org/10.1021/acs.langmuir.0c03128
Ueki T.; Watanabe M.; Lodge T. P. Doubly thermosensitive self-assembly of diblock copolymers in ionic liquids. Macromolecules, 2009, 42(4), 1315-1320. doi:10.1021/ma802443bhttp://dx.doi.org/10.1021/ma802443b
Kitazawa Y.; Ueki T.; McIntosh L. D.; Tamura S.; Niitsuma K.; Imaizumi S.; Lodge T. P.; Watanabe M. Hierarchical sol-gel transition induced by thermosensitive self-assembly of an ABC triblock polymer in an ionic liquid. Macromolecules, 2016, 49(4), 1414-1423. doi:10.1021/acs.macromol.5b02616http://dx.doi.org/10.1021/acs.macromol.5b02616
Ding Y. L.; Yan Y. X.; Peng Q.; Wang B. X.; Xing Y. X.; Hua Z.; Wang Z. K. Multiple stimuli-responsive cellulose hydrogels with tunable LCST and UCST as smart windows. ACS Appl. Polym. Mater., 2020, 2(8), 3259-3266. doi:10.1021/acsapm.0c00414http://dx.doi.org/10.1021/acsapm.0c00414
Ding Y.; Zhang X. C.; Xu B. Y.; Li W. LCST and UCST-type thermoresponsive behavior in dendronized gelatins. Polym. Chem., 2022, 13(19), 2813-2821. doi:10.1039/d2py00118ghttp://dx.doi.org/10.1039/d2py00118g
Yuan H.; Chi H.; Yuan W. Z. A star-shaped amphiphilic block copolymer with dual responses: synthesis, crystallization, self-assembly, redox and LCST-UCST thermoresponsive transition. Polym. Chem., 2016, 7(30), 4901-4911. doi:10.1039/c6py00702chttp://dx.doi.org/10.1039/c6py00702c
Qin Y. S.; Zhu Y. L.; Luo X.; Liang S. E.; Wang J. H.; Zhang L. End group modification of polyethylene glycol (PEG): a novel method to mitigate the supercooling of PEG as phase change material. Int. J. Energy Res., 2019, 43(2), 1000-1011. doi:10.1002/er.4356http://dx.doi.org/10.1002/er.4356
Chen L.; Zhao C.; Huang J.; Zhou J. J.; Liu M. J. Enormous-stiffness-changing polymer networks by glass transition mediated microphase separation. Nat. Commun., 2022, 13, 6821. doi:10.1038/s41467-022-34677-9http://dx.doi.org/10.1038/s41467-022-34677-9
Li W. L.; Wu P. Y. Unusual phase transition mechanism of poly(ethylene oxide) in an ionic liquid: Opposite frequency shifts in C-H groups. Soft Matter, 2013, 9(48), 11585-11597. doi:10.1039/c3sm51920ahttp://dx.doi.org/10.1039/c3sm51920a
Wang Z. W.; Wu P. Y. Spectral insights into gelation microdynamics of PNIPAM in an ionic liquid. J. Phys. Chem. B, 2011, 115(36), 10604-10614. doi:10.1021/jp205650hhttp://dx.doi.org/10.1021/jp205650h
Tokuda H.; Tsuzuki S.; Abu Bin Hasan Susan, M.; Hayamizu K.; Watanabe M. How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. J. Phys. Chem. B, 2006, 110(39), 19593-19600. doi:10.1021/jp064159vhttp://dx.doi.org/10.1021/jp064159v
Tsuda R.; Kodama K.; Ueki T.; Kokubo H.; Imabayashi S. I.; Watanabe M. LCST-type liquid-liquid phase separation behaviour of poly(ethylene oxide) derivatives in an ionic liquid. Chem. Commun., 2008, (40), 4939-4941. doi:10.1039/b810127bhttp://dx.doi.org/10.1039/b810127b
Lee H. N.; Newell N.; Bai Z. F.; Lodge T. P. Unusual lower critical solution temperature phase behavior of poly(ethylene oxide) in ionic liquids. Macromolecules, 2012, 45(8), 3627-3633. doi:10.1021/ma300335phttp://dx.doi.org/10.1021/ma300335p
Dormidontova E. E. Role of competitive PEO-water and water-water hydrogen bonding in aqueous solution PEO behavior. Macromolecules, 2002, 35(3), 987-1001. doi:10.1021/ma010804ehttp://dx.doi.org/10.1021/ma010804e
Dormidontova E. E. Influence of end groups on phase behavior and properties of PEO in aqueous solutions. Macromolecules, 2004, 37(20), 7747-7761. doi:10.1021/ma035609+http://dx.doi.org/10.1021/ma035609+
Tamate, R.; Ueki, T. Adaptive ion-gel: stimuli-responsive, and self-healing ion gels. Chem. Rec., 2023, 23(8), e202380801. doi:10.1002/tcr.202380801http://dx.doi.org/10.1002/tcr.202380801
Chen L.; Gu Z. D.; Li L.; Lei W. W.; Rong Q. F.; Zhao C. Q.; Wu Q. S.; Gu Z.; Jin X.; Jiang L.; Liu M. J. Integration of hydrogels with functional nanoparticles using hydrophobic comb-like polymers as an adhesive layer. J. Mater. Chem. A, 2018, 6(31), 15147-15153. doi:10.1039/c8ta02970ahttp://dx.doi.org/10.1039/c8ta02970a
0
浏览量
289
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构