浏览全部资源
扫码关注微信
1.北京师范大学化学学院 能量转换与存储材料北京市重点实验室 北京 100875
2.青岛大学纺织服装学院 生物多糖纤维成形与生态纺织国家重点实验室 青岛 266071
E-mail: licuihong@bnu.edu.cn
E-mail: yqliu@qdu.edu.cn
E-mail: liuyh@qdu.edu.cn
E-mail: zsbo@bnu.edu.cn
纸质出版日期:2024-01-20,
网络出版日期:2023-11-14,
收稿日期:2023-07-23,
录用日期:2023-08-29
移动端阅览
李大伟, 马雪晴, 崔新悦, 陈亚男, 魏楠, 言行, 李翠红, 刘玉强, 刘亚辉, 薄志山. 含炔键的聚合物给体材料设计合成及在有机太阳能电池中的性能研究. 高分子学报, 2024, 55(1), 48-57
Li, D. W.; Ma, X. Q.; Cui, X. Y.; Chen, Y. N.; Wei, N; Yan, X.; Li, C. H.; Liu, Y. Q.; Liu, Y. H.; Bo, Z. S. Design, synthesis, and performance study of polymer donor materials with alkyne bonds in organic solar cells. Acta Polymerica Sinica, 2024, 55(1), 48-57
李大伟, 马雪晴, 崔新悦, 陈亚男, 魏楠, 言行, 李翠红, 刘玉强, 刘亚辉, 薄志山. 含炔键的聚合物给体材料设计合成及在有机太阳能电池中的性能研究. 高分子学报, 2024, 55(1), 48-57 DOI: 10.11777/j.issn1000-3304.2023.23193.
Li, D. W.; Ma, X. Q.; Cui, X. Y.; Chen, Y. N.; Wei, N; Yan, X.; Li, C. H.; Liu, Y. Q.; Liu, Y. H.; Bo, Z. S. Design, synthesis, and performance study of polymer donor materials with alkyne bonds in organic solar cells. Acta Polymerica Sinica, 2024, 55(1), 48-57 DOI: 10.11777/j.issn1000-3304.2023.23193.
利用结构简单、成本低廉的初始原料,设计合成了主链含炔键的聚合物给体材料PBEA-F和PBEA. 由于炔键的强吸电子能力,分子的最高占有轨道能级(HOMO)得以降低,使得聚合物的带隙变宽. 同时,引入炔键的聚合物给体材料与受体小分子材料BTP-eC9-4F共混制备有机太阳能电池器件,可实现较低的非辐射能量损失与高的开路电压(open circuit voltage,
V
oc
). 最终基于PBEA的器件可得到0.91 eV的
V
oc
、20.70 mA/cm
2
的短路电流密度(short-circuit current density,
J
sc
)和10.39%的能量转化效率(power conversion efficiency,PCE),远高于PBEA-F器件的PCE (5.50%).
We have successfully developed and synthesized polymer donor materials with alkyne bonds incorporated into the main chain
using structurally simple and cost-effective materials. The incorporation of alkyne bonds significantly enhances the electron-withdrawing ability of the polymer backbone
leading to a lower highest occupied molecular orbital (HOMO) energy level and a wider bandgap for the polymer. To further explore the potential applications of these materials
we fabricated organic solar cell (OSC) devices by blending the polymer donor materials with the small molecule acceptor material BTP-eC9-4F. These devices exhibited remarkably low non-radiative energy losses and achieved a high open circuit voltage (
V
oc
). Notably
the device based on PBEA demonstrated exceptional performance
with a
V
oc
of 0.91 V
a short-circuit current density (
J
sc
) of 20.70 mA/cm
2
and a power conversion efficiency (PCE) of 10.39%. In comparison
the PBEA-F device only achieved a PCE of 5.50%. These results highlight the superior performance of our designed polymer donor materials
which can be attributed to the introduction of alkyne bonds. The enhanced electron-withdrawing ability of the polymer backbone contributes to the reduction of non-radiative energy losses and the improvement of device performance. Our findings not only demonstrate the potential of these materials for high-performance organic solar cells but also underscore the importance of rational material design in achieving efficient energy conversion.
有机太阳能电池炔键给体材料简单易合成
Organic solar cellsAlkyne bondsPolymer donor materialsSimple and cost-effective
黄飞, 薄志山, 耿延候, 王献红, 王利祥, 马於光, 侯剑辉, 胡文平, 裴坚, 董焕丽, 王树, 李振, 帅志刚, 李永舫, 曹镛. 光电高分子材料的研究进展. 高分子学报, 2019, 50(10), 988-1046. doi:10.11777/j.issn1000-3304.2019.19110http://dx.doi.org/10.11777/j.issn1000-3304.2019.19110
Wang J. Q.; Wang Y. F.; Bi P. Q.; Chen Z. H.; Qiao J. W.; Li J. Y.; Wang W. X.; Zheng Z.; Zhang S. Q.; Hao X. T.; Hou J. H. Binary organic solar cells with 19.2% efficiency enabled by solid additive. Adv. Mater., 2023, 35(25), 2301583. doi:10.1002/adma.202301583http://dx.doi.org/10.1002/adma.202301583
Wang J. W.; Cui Y.; Chen Z. H.; Zhang J. Q.; Xiao Y.; Zhang T.; Wang W. X.; Xu Y.; Yang N.; Yao H. F.; Hao X. T.; Wei Z. X.; Hou J. H. A wide bandgap acceptor with large dielectric constant and high electrostatic potential values for efficient organic photovoltaic cells. J. Am. Chem. Soc., 2023, 145(25), 13686-13695. doi:10.1021/jacs.3c01634http://dx.doi.org/10.1021/jacs.3c01634
Liu K. R.; Jiang Y. Y.; Liu F.; Ran G. L.; Huang F.; Wang W. X.; Zhang W. K.; Zhang C.; Hou J. H.; Zhu X. Z. Organic solar cells with over 19% efficiency enabled by a 2D-conjugated non-fullerene acceptor featuring favorable electronic and aggregation structures. Adv. Mater., 2023, 35(32), 2300363. doi:10.1002/adma.202300363http://dx.doi.org/10.1002/adma.202300363
Chen Q. L.; Huang H.; Hu D.; Zhang C. E.; Xu X. J.; Lu H.; Wu Y. G.; Yang C. L.; Bo Z. S. Improving the performance of layer-by-layer processed organic solar cells via introducing a wide-bandgap dopant into the upper acceptor layer. Adv. Mater., 2023, 35(28), 2211372. doi:10.1002/adma.202211372http://dx.doi.org/10.1002/adma.202211372
Xie Y. P.; Cai Y. H.; Zhu L.; Xia R. X.; Ye L. L.; Feng X.; Yip H. L.; Liu F.; Lu G. H.; Tan S. T.; Sun Y. M. Fibril network strategy enables high-performance semitransparent organic solar cells. Adv. Funct. Mater., 2020, 30(28), 2002181. doi:10.1002/adfm.202002181http://dx.doi.org/10.1002/adfm.202002181
Wang H.; Lu H.; Chen Y. N.; Zhang A. D.; Liu Y. Q.; Li D. W.; Liu Y. H.; Xu X. J.; Bo Z. S. A versatile planar building block with C2V symmetry for high-performance non-halogenated solvent processable polymer donors. Adv. Energy Mater., 2022, 12(16), 2104028. doi:10.1002/aenm.202104028http://dx.doi.org/10.1002/aenm.202104028
Zheng Z.; Yao H. F.; Ye L.; Xu Y.; Zhang S. Q.; Hou J. H. PBDB-T and its derivatives: a family of polymer donors enables over 17% efficiency in organic photovoltaics. Mater. Today, 2020, 35, 115-130. doi:10.1016/j.mattod.2019.10.023http://dx.doi.org/10.1016/j.mattod.2019.10.023
Liu Q. S.; Jiang Y. F.; Jin K.; Qin J. Q.; Xu J. G.; Li W. T.; Xiong J.; Liu J. F.; Xiao Z.; Sun K.; Yang S. F.; Zhang X. T.; Ding L. M. 18% Efficiency organic solar cells. Sci. Bull., 2020, 65(4), 272-275. doi:10.1016/j.scib.2020.01.001http://dx.doi.org/10.1016/j.scib.2020.01.001
Yu Z. P.; Liu Z. X.; Chen F. X.; Qin R.; Lau T. K.; Yin J. L.; Kong X. Q.; Lu X. H.; Shi M. M.; Li C. Z.; Chen H. Z. Simple non-fused electron acceptors for efficient and stable organic solar cells. Nat. Commun., 2019, 10, 2152. doi:10.1038/s41467-019-10098-zhttp://dx.doi.org/10.1038/s41467-019-10098-z
Liu Y. H.; Liu B. W.; Ma C. Q.; Huang F.; Feng G. T.; Chen H. Z.; Hou J. H.; Yan L. P.; Wei Q. Y.; Luo Q.; Bao Q. Y.; Ma W.; Liu W.; Li W. W.; Wan X. J.; Hu X. T.; Han Y. C.; Li Y. W.; Zhou Y. H.; Zou Y. P.; Chen Y. W.; Li Y. F.; Chen Y. S.; Tang Z.; Hu Z. C.; Zhang Z. G.; Bo Z. S. Recent progress in organic solar cells (Part I material science). Sci. China Chem., 2022, 65(2), 224-268. doi:10.1007/s11426-021-1180-6http://dx.doi.org/10.1007/s11426-021-1180-6
Yuan J.; Zhang Y. Q.; Zhou L. Y.; Zhang G. C.; Yip H. L.; Lau T. K.; Lu X. H.; Zhu C.; Peng H. J.; Johnson P. A.; Leclerc M.; Cao Y.; Ulanski J.; Li Y. F.; Zou Y. P. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3(4), 1140-1151. doi:10.1016/j.joule.2019.01.004http://dx.doi.org/10.1016/j.joule.2019.01.004
Li S. X.; Zhan L. L.; Sun C. K.; Zhu H. M.; Zhou G. Q.; Yang W. T.; Shi M. M.; Li C. Z.; Hou J. H.; Li Y. F.; Chen H. Z. Highly efficient fullerene-free organic solar cells operate at near zero highest occupied molecular orbital offsets. J. Am. Chem. Soc., 2019, 141(7), 3073-3082. doi:10.1021/jacs.8b12126http://dx.doi.org/10.1021/jacs.8b12126
Zhang J. Q.; Tan H. S.; Guo X. G.; Facchetti A.; Yan H. Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat. Energy, 2018, 3(9), 720-731. doi:10.1038/s41560-018-0181-5http://dx.doi.org/10.1038/s41560-018-0181-5
Cheng P.; Li G.; Zhan X. W.; Yang Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photonics, 2018, 12(3), 131-142. doi:10.1038/s41566-018-0104-9http://dx.doi.org/10.1038/s41566-018-0104-9
Zhang S.; Hou J. Rational design strategies for polymer donors for applications in non-fullerene organic photovoltaic cells. Acta Phys-Chim Sin, 2017, 33(12), 2327-2338.
Cong P. Q.; Wang Z. T.; Geng Y. F.; Meng Y. H.; Meng C.; Chen L.; Tang A. L.; Zhou E. J. Benzothiadiazole-based polymer donors. Nano Energy, 2023, 105, 108017. doi:10.1016/j.nanoen.2022.108017http://dx.doi.org/10.1016/j.nanoen.2022.108017
Huang S. R.; Chen L.; Liao Z. H.; An Y. K.; Xie Q.; Huang B.; Chen Y. W. Bithiazole-based copolymer with deep HOMO level and noncovalent conformational lock for organic photovoltaics. Org. Electron., 2019, 64, 110-116. doi:10.1016/j.orgel.2018.10.019http://dx.doi.org/10.1016/j.orgel.2018.10.019
Kim J.; Kang J.; Park Y. S.; Ahn H.; Eom S. H.; Jang S. Y.; Jung I. H. Alkylthiazole-based semicrystalline polymer donors for fullerene-free organic solar cells. Polym. Chem., 2019, 10(31), 4314-4321. doi:10.1039/c9py00608ghttp://dx.doi.org/10.1039/c9py00608g
Sun K. S.; Tang X. Q.; Ran Y. L.; He R. X.; Shen W.; Li M. π-Bridge modification of thiazole-bridged DPP polymers for high performance near-IR OSCs. Phys. Chem. Chem. Phys., 2018, 20(3), 1664-1672. doi:10.1039/c7cp06195ahttp://dx.doi.org/10.1039/c7cp06195a
Bronstein H.; Hurhangee M.; Fregoso E. C.; Beatrup D.; Soon Y. W.; Huang Z. G.; Hadipour A.; Tuladhar P. S.; Rossbauer S.; Sohn E. H.; Shoaee S.; Dimitrov S. D.; Frost J. M.; Ashraf R. S.; Kirchartz T.; Watkins S. E.; Song K.; Anthopoulos T.; Nelson J.; Rand B. P.; Durrant J. R.; McCulloch I. Isostructural, deeper highest occupied molecular orbital analogues of poly(3-hexylthiophene) for high-open circuit voltage organic solar cells. Chem. Mater., 2013, 25(21), 4239-4249. doi:10.1021/cm4022563http://dx.doi.org/10.1021/cm4022563
Su W. Y.; Fan Q. P.; Guo X.; Meng X. Y.; Bi Z. Z.; Ma W.; Zhang M. J.; Li Y. F. Two compatible nonfullerene acceptors with similar structures as alloy for efficient ternary polymer solar cells. Nano Energy, 2017, 38, 510-517. doi:10.1016/j.nanoen.2017.05.060http://dx.doi.org/10.1016/j.nanoen.2017.05.060
Guo B.; Li W. B.; Guo X.; Meng X. Y.; Ma W.; Zhang M. J.; Li Y. F. High efficiency nonfullerene polymer solar cells with thick active layer and large area. Adv. Mater., 2017, 29(36), 1702291. doi:10.1002/adma.201702291http://dx.doi.org/10.1002/adma.201702291
Zhao K.; Wang Q.; Xu B. W.; Zhao W. C.; Liu X. Y.; Yang B.; Sun M. L.; Hou J. H. Efficient fullerene-based and fullerene-free polymer solar cells using two wide band gap thiophene-thiazolothiazole-based photovoltaic materials. J. Mater. Chem. A, 2016, 4(24), 9511-9518. doi:10.1039/c6ta03288ehttp://dx.doi.org/10.1039/c6ta03288e
Zhou J. L.; Lei P.; Geng Y. F.; He Z. H.; Li X. D.; Zeng Q. D.; Tang A. L.; Zhou E. J. A linear 2D-conjugated polymer based on 4,8-bis(4-chloro-5-tripropylsilyl-thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene (BDT-T-SiCl) for low voltage loss organic photovoltaics. J. Mater. Chem. A, 2022, 10(18), 9869-9877. doi:10.1039/d2ta00812bhttp://dx.doi.org/10.1039/d2ta00812b
Qian D. P.; Ye L.; Zhang M. J.; Liang Y. R.; Li L. J.; Huang Y.; Guo X.; Zhang S. Q.; Tan Z. A.; Hou J. H. Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state. Macromolecules, 2012, 45(24), 9611-9617. doi:10.1021/ma301900hhttp://dx.doi.org/10.1021/ma301900h
Du M. Z.; Chen Y.; Li J. F.; Geng Y. F.; Ji H. R.; Li G. Q.; Tang A. L.; Guo Q. A.; Zhou E. J. Wide-band-gap phthalimide-based D-π-a polymers for nonfullerene organic solar cells: the effect of conjugated π-bridge from thiophene to thieno[3,2-b]thiophene. J. Phys. Chem. C, 2020, 124(1), 230-236. doi:10.1021/acs.jpcc.9b10580http://dx.doi.org/10.1021/acs.jpcc.9b10580
Kim G. U.; Sun C.; Lee D. C.; Choi G. S.; Park J. S.; Seo S.; Lee S.; Choi D. Y.; Kwon S. K.; Cho S.; Kim Y. H.; Kim B. J. Effect of the selective halogenation of small molecule acceptors on the blend morphology and voltage loss of high-performance solar cells. Adv. Funct. Mater., 2022, 32(25), 2201150. doi:10.1002/adfm.202201150http://dx.doi.org/10.1002/adfm.202201150
Ren J. Z.; Bi P. Q.; Zhang J. Q.; Liu J.; Wang J. W.; Xu Y.; Wei Z. X.; Zhang S. Q.; Hou J. H. Molecular design revitalizes the low-cost PTV-polymer for highly efficient organic solar cells. Natl. Sci. Rev., 2021, 8(8), nwab031. doi:10.1093/nsr/nwab031http://dx.doi.org/10.1093/nsr/nwab031
Wang H.; Lu H.; Chen Y. N.; Ran G. L.; Zhang A. D.; Li D. W.; Yu N.; Zhang Z.; Liu Y. H.; Xu X. J.; Zhang W. K.; Bao Q. Y.; Tang Z.; Bo Z. S. Chlorination enabling a low-cost benzodithiophene-based wide-bandgap donor polymer with an efficiency of over 17%. Adv. Mater., 2022, 34(4), 2105483. doi:10.1002/adma.202105483http://dx.doi.org/10.1002/adma.202105483
Yuan X. Y.; Zhao Y. L.; Zhan T.; Oh J.; Zhou J. D.; Li J. Y.; Wang X. J.; Wang Z. Q.; Pang S. T.; Cai P.; Yang C.; He Z. C.; Xie Z. Q.; Duan C. H.; Huang F.; Cao Y. A donor polymer based on 3-cyanothiophene with superior batch-to-batch reproducibility for high-efficiency organic solar cells. Energy Environ. Sci., 2021, 14(10), 5530-5540. doi:10.1039/d1ee01957khttp://dx.doi.org/10.1039/d1ee01957k
Li Y. L.; Zhang Y.; Wu B. Q.; Pang S. T.; Yuan X. Y.; Duan C. H.; Huang F.; Cao Y. High-efficiency P3HT-based all-polymer solar cells with a thermodynamically miscible polymer acceptor. Sol. RRL, 2022, 6(7), 2200073. doi:10.1002/solr.202200073http://dx.doi.org/10.1002/solr.202200073
Liu T.; Huo L. J.; Chandrabose S.; Chen K.; Han G. C.; Qi F.; Meng X. Y.; Xie D. J.; Ma W.; Yi Y. P.; Hodgkiss J. M.; Liu F.; Wang J.; Yang C. L.; Sun Y. M. Optimized fibril network morphology by precise side-chain engineering to achieve high-performance bulk-heterojunction organic solar cells. Adv. Mater., 2018, 30(26), 1707353. doi:10.1002/adma.201707353http://dx.doi.org/10.1002/adma.201707353
0
浏览量
192
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构