浏览全部资源
扫码关注微信
1.中国科学院化学研究所 中国科学院极端环境高分子材料重点实验室 北京 100190
2.中国科学院大学化学与化工学院 北京 100049
E-mail: luoym@iccas.ac.cn
zongbo@iccas.ac.cn
纸质出版日期:2024-02-20,
网络出版日期:2023-11-22,
收稿日期:2023-09-14,
录用日期:2023-10-07
移动端阅览
陈楚童, 陈艳杰, 罗永明, 张宗波, 徐彩虹. 胺源对“一锅法”合成聚硼硅氮烷结构及性能的影响. 高分子学报, 2024, 55(2), 161-171
Chen, C. T.; Chen, Y. J.; Luo, Y. M.; Zhang, Z. B.; Xu, C. H. The effect of amine source on the structure and properties of polyborosilazane synthesized by "one pot" method. Acta Polymerica Sinica, 2024, 55(2), 161-171
陈楚童, 陈艳杰, 罗永明, 张宗波, 徐彩虹. 胺源对“一锅法”合成聚硼硅氮烷结构及性能的影响. 高分子学报, 2024, 55(2), 161-171 DOI: 10.11777/j.issn1000-3304.2023.23194.
Chen, C. T.; Chen, Y. J.; Luo, Y. M.; Zhang, Z. B.; Xu, C. H. The effect of amine source on the structure and properties of polyborosilazane synthesized by "one pot" method. Acta Polymerica Sinica, 2024, 55(2), 161-171 DOI: 10.11777/j.issn1000-3304.2023.23194.
以六甲基二硅氮烷(MM
N
)、四甲基二乙烯基二硅氮烷(MM
NVi
)和四甲基二硅氮烷(MM
NH
) 3种不同结构的二硅氮烷为胺源,通过与氯硅烷和三氯化硼反应,制备出具有不同封端结构的聚硼硅氮烷. 其中,以MM
N
、MM
NVi
为胺源可获得液态产物;以MM
NH
为胺源时,因合成过程中发生活性基团间的过度交联导致产物凝胶. 采用核磁共振波谱仪、红外光谱仪对液态前驱体聚合物及其热解产物的结构进行了表征. 研究结果表明:通过“一锅法”制备的液态聚硼硅氮烷主链具有较多的支化和环状结构,随着封端结构中乙烯基含量的增加,所得前驱体的固化温度降低,固化反应活化能降低. 与以MM
N
为胺源和封端剂合成的聚硼硅氮烷相比,以MM
NVi
为胺源所得前驱体固化前后陶瓷产率分别提高了14.9%及8.1%. 并且,通过改变胺源的种类和比例可以调节热解产物的元素组成,合成的液态前驱体聚合物热解所得SiBCN陶瓷结晶温度高于1700 ℃.
We used three different structures of disilazane
hexamethyldisilazane (MM
N
)
tetramethyldivinyldisilazane (MM
NVi
) and tetramethyldisilazane (MM
NH
)
as a source of amine
which then reacted with chlorosilanes and boron trichloride
to produce polyborosilazanes with different end-capped structures. Among the reactants
liquid state products were acquired when using MM
N
and MM
NVi
as the amine source. While gelatine products were acquired when using MM
NH
as the amine source
due to the excess crosslink of the active group during synthesis. We then used nuclear magnetic resonance spectrometer and infrared spectrometer to characterize the liquid precursor polymer and its pyrolysis products. The results showed that the liquid polyborosilazane backbone made by one pot method had more branches and cyclic structures. As the vinyl group in the end-capped structure increases
the curing temperature of the precursor dropped and the activation energy of the curing reaction lowered. When compared to the polyborosilazane which is made by using MM
N
and the capping agent
the ceramic production rate increased by 14.9% and 8.1% when MM
NVi
made precursor curation occurred. Furthermore
SiBCN ceramic
made by pyrolysis of the synthetic precursor polymers
has a crystallization temperature higher than 1700 ℃. This conclusion is reached by adjusting the element composition through changing the amine source type and ratio.
前驱体转化法硅硼碳氮陶瓷聚硼硅氮烷“一锅法”
Precursor-derivedSiBCN ceramicPolyborosilazane"One-pot" synthesis
Riedel R.; Kienzle A.; Dressler W.; Ruwisch L.; Bill J.; Aldinger F. A silicoboron carbonitride ceramic stable to 2000 ℃. Nature, 1996, 382(6594), 796-798. doi:10.1038/382796a0http://dx.doi.org/10.1038/382796a0
Colombo P.; Mera G.; Riedel R.; Sorarù G. D. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J. Am. Ceram. Soc., 2010, 93(7), 1805-1837. doi:10.1111/j.1551-2916.2010.03876.xhttp://dx.doi.org/10.1111/j.1551-2916.2010.03876.x
Ionescu E.; Bernard S.; Lucas R.; Kroll P.; Ushakov S.; Navrotsky A.; Riedel R. Polymer-derived ultra-high temperature ceramics (UHTCs) and related materials. Adv. Eng. Mater., 2019, 21(8), 1900269. doi:10.1002/adem.201900269http://dx.doi.org/10.1002/adem.201900269
Wu Y. H.; Ye L.; Sun Y. N.; Han W. J.; Zhao T. Synthesis and pyrolysis of soluble cyclic Hf-schiff base polymers. Chinese J. Polym. Sci., 2021, 39(6), 659-664.
Takamizawa M., Kobayashi T., Hayashida A., Takeda Y. Produced from polysilane compound and borazine compound, intermediate for oxide-free ceramic or fiber. patentUS, US4550151 A. 1985-10-29.
Müller A.; Gerstel P.; Weinmann M.; Bill J.; Aldinger F. Si―B―C―N ceramic precursors derived from dichlorodivinylsilane and chlorotrivinylsilane. 1. Precursor synthesis. Chem. Mater., 2002, 14(8), 3398-3405. doi:10.1021/cm021178ihttp://dx.doi.org/10.1021/cm021178i
Su K.; Remsen E. E.; Zank G. A.; Sneddon L. G. Synthesis, characterization, and ceramic conversion reactions of borazine-modified hydridopolysilazanes: new polymeric precursors to silicon nitride carbide boride (SiNCB) ceramic composites. Chem. Mater., 1993, 5(4), 547-556. doi:10.1021/cm00028a024http://dx.doi.org/10.1021/cm00028a024
Wideman T.; Fazen P. J.; Su K.; Remsen E. E.; Zank G. A.; Sneddon L. G. Second-generation polymeric precursors for BN and SiNCB ceramic materials. Appl. Organomet. Chem., 1998, 12(10-11), 681-693. doi:10.1002/(sici)1099-0739(199810/11)12:10/11<681::aid-aoc786>3.0.co;2-dhttp://dx.doi.org/10.1002/(sici)1099-0739(199810/11)12:10/11<681::aid-aoc786>3.0.co;2-d
Wang Z. C.; Aldinger F.; Riedel R. Novel silicon-boron-carbon-nitrogen materials thermally stable up to 2200 ℃. J. Am. Ceram. Soc., 2001, 84(10), 2179-2183. doi:10.1111/j.1151-2916.2001.tb00984.xhttp://dx.doi.org/10.1111/j.1151-2916.2001.tb00984.x
Riedel R.; Ruswisch L. M.; An L. N.; Raj R. Amorphous silicoboron carbonitride ceramic with very high viscosity at temperatures above 1500 ℃. J. Am. Ceram. Soc., 1998, 81(12), 3341-3344. doi:10.1111/j.1151-2916.1998.tb02780.xhttp://dx.doi.org/10.1111/j.1151-2916.1998.tb02780.x
Lee J.; Butt D. P.; Baney R. H.; Bowers C. R.; Tulenko J. S. Synthesis and pyrolysis of novel polysilazane to SiBCN ceramic. J. Non Cryst. Solids, 2005, 351(37-39), 2995-3005. doi:10.1016/j.jnoncrysol.2005.06.038http://dx.doi.org/10.1016/j.jnoncrysol.2005.06.038
Tang Y.; Wang J.; Li X. D.; Wang H.; Li W. H.; Wang X. Z. Preceramic polymer for Si―B―N―C fiber via one-step condensation of silane, BCl3, and silazane. J. Appl. Polym. Sci., 2008, 110(2), 921-928. doi:10.1002/app.28679http://dx.doi.org/10.1002/app.28679
Zhang Z. B.; Zeng F.; Han J. J.; Luo Y. M.; Xu C. H. Synthesis and characterization of a new liquid polymer precursor for Si―B―C―N ceramics. J. Mater. Sci., 2011, 46(18), 5940-5947. doi:10.1007/s10853-011-5549-xhttp://dx.doi.org/10.1007/s10853-011-5549-x
Corriu R. J. P.; Leclercq D.; Mutin P. H.; Vioux A. Thermogravimetric mass spectrometric investigation of the thermal conversion of organosilican precursors into ceramics under argon and ammonia. 1. Poly(carbosilane). Chem. Mater., 1992, 4(3), 711-716. doi:10.1021/cm00021a039http://dx.doi.org/10.1021/cm00021a039
Li Y. L.; Kroke E.; Riedel R.; Fasel C.; Gervais C.; Babonneau F. Thermal cross-linking and pyrolytic conversion of poly(ureamethylvinyl)silazanes to silicon-based ceramics. Appl. Organomet. Chem., 2001, 15(10), 820-832. doi:10.1002/aoc.236http://dx.doi.org/10.1002/aoc.236
Cheng F.; Toury B.; Archibald S. J.; Bradley J. S. Synthesis and structure of 2,4,6-tris[tris(dimethyl-amino)silylamino]borazine: {[(CH3)2N]3SiNH}3B3N3H3. J. Organomet. Chem., 2002, 657(1-2), 71-74.
Marsmann H. C. Si-29 Nuclear magnetic-resonance measurements on some monomeric silicon-compounds. Chemiker-Zeitung, 1972, 96 (5), 288-290.
Schuhmacher J.; Berger F.; Weinmann M.; Bill J.; Aldinger F.; Müller K. Solid-state NMR and FT IR studies of the preparation of Si―B―C―N ceramics from boron-modified polysilazanes. Appl. Organomet. Chem., 2001, 15(10), 809-819. doi:10.1002/aoc.235http://dx.doi.org/10.1002/aoc.235
Seitz J.; Bill J.; Egger N.; Aldinger F. Structural investigations of Si/C/N-ceramics from polysilazane precursors by nuclear magnetic resonance. J. Eur. Ceram. Soc., 1996, 16(8), 885-891. doi:10.1016/0955-2219(96)00007-6http://dx.doi.org/10.1016/0955-2219(96)00007-6
Schmidt W. R.; Narsavage-Heald D. M.; Jones D. M.; Marchetti P. S.; Raker D.; Maciel G. E. Poly(borosilazane) precursors to ceramic nanocomposites. Chem. Mater., 1999, 11(6), 1455-1464. doi:10.1021/cm980558uhttp://dx.doi.org/10.1021/cm980558u
Schmidt W. R.; Interrante L. V.; Doremus R. H.; Trout T. K.; Marchetti P. S.; Maciel G. E. Pyrolysis chemistry of an organometallic precursor to silicon carbide. Chem. Mater., 1991, 3(2), 257-267. doi:10.1021/cm00014a011http://dx.doi.org/10.1021/cm00014a011
Bill J.; Kamphowe T. W.; Müller A.; Wichmann T.; Zern A.; Jalowieki A.; Mayer J.; Weinmann M.; Schuhmacher J.; Müller K.; Peng J. Q.; Seifert H. J.; Aldinger F. Precursor-derived Si―(B―) C―N ceramics: thermolysis, amorphous state and crystallization. Appl. Organomet. Chem., 2001, 15(10), 777-793. doi:10.1002/aoc.242http://dx.doi.org/10.1002/aoc.242
Choong Kwet Yive N. S.; Corriu R. J. P.; Leclercq D.; Mutin P. H.; Vioux A. Silicon carbonitride from polymeric precursors: thermal cross-linking and pyrolysis of oligosilazane model compounds. Chem. Mater., 1992, 4(1), 141-146. doi:10.1021/cm00019a029http://dx.doi.org/10.1021/cm00019a029
0
浏览量
238
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构