浏览全部资源
扫码关注微信
华东理工大学材料科学与工程学院 上海 200237
E-mail: wazhang@ecust.edu.cn
caichunhua@ecust.edu.cn
jlin@ecust.edu.cn
纸质出版日期:2024-02-20,
网络出版日期:2023-10-27,
收稿日期:2023-07-25,
录用日期:2023-09-13
移动端阅览
王寅超, 郑家豪, 张伟安, 蔡春华, 林嘉平. 含卟啉聚肽的合成及其自组装行为研究. 高分子学报, 2024, 55(2), 172-181
Wang, Y. C.; Zheng, J. H.; Zhang, W. A.; Cai, C. H.; Lin, J. P. Synthesis and self-assembly behavior of porphyrin-based polypeptides. Acta Polymerica Sinica, 2024, 55(2), 172-181
王寅超, 郑家豪, 张伟安, 蔡春华, 林嘉平. 含卟啉聚肽的合成及其自组装行为研究. 高分子学报, 2024, 55(2), 172-181 DOI: 10.11777/j.issn1000-3304.2023.23196.
Wang, Y. C.; Zheng, J. H.; Zhang, W. A.; Cai, C. H.; Lin, J. P. Synthesis and self-assembly behavior of porphyrin-based polypeptides. Acta Polymerica Sinica, 2024, 55(2), 172-181 DOI: 10.11777/j.issn1000-3304.2023.23196.
以带有炔丙基端基的聚(
γ
-苄基-
L
-谷氨酸酯) (PBLG)和含单叠氮基团的卟啉衍生物(TFPP-N
3
)为反应物,利用点击反应,合成了含卟啉聚肽(TFPP-PBLG). 运用核磁共振氢谱(
1
H-NMR)、傅里叶变换红外光谱(FTIR)、紫外-可见光光度计(UV-Vis)和凝胶渗透色谱(GPC)表征了聚合物的结构、分子量及其分布. 采用有机共溶剂溶解、选择性溶剂(水)诱导组装并透析的方法,制备得到碗状胶束. 通过扫描电子显微镜(SEM)、原子力显微镜(AFM)、透射电子显微镜(TEM)、动态激光光散射(DLS)和小角X射线散射仪(SAXS)表征了组装体的形貌与结构,并探究其自组装机理. 结果表明,卟啉基团间的
π
-
π
堆叠作用使得胶束具有较为稳定结构;在透析过程中,胶束内部的溶剂向外扩散,导致胶束塌陷形成了纳米碗. 增加PBLG链段长度,会进一步提高初始胶束的结构稳定性,导致在透析过程中胶束结构保持完整不能得到纳米碗. 初始胶束的结构稳定性是决定其在后续溶剂交换过程中是否发生凹陷从而形成纳米碗的关键.
Poly(
γ
-benzyl-
L
-glutamate) (PBLG) with propargyl terminal group and porphyrin derivatives containing single azide group (TFPP-N
3
) were used as reactants to synthesize porphyrin-based polypeptide (TFPP-PBLG) using a click reaction. The molecular structures of the polymers
including molecular weight
polydispersity index
and composition were characterized by nuclear magnetic resonance spectroscopy (
1
H-NMR)
Fourier transform infrared spectroscopy (FTIR)
ultraviolet-visible spectrophotometer (UV-Vis)
and gel permeation chromatography (GPC). The critical water content (CWC) for the aggregation of the TFPP-PBLG polymers was determined by turbidity measurement (OD). By a selective precipitation method with water as the selective solvent
bowl-like aggregates with obvious pits were obtained. The solution self-assembly behavior was studied by scanning electron microscopy (SEM)
atomic force microscopy (AFM)
transmission electron microscopy (TEM)
dynamic laser light scattering (DLS) and small-angle X-ray scattering (SAXS). The results show that the TFPP-PBLG polymers can self-assemble into bowl-like aggregations when the PBLG chain is relatively short. Upon the addition of water
solubility of the solvent for polymers decreases
and the polymers aggregate into micelles. The
π
-
π
stacking effect contributed by porphyrin derivatives results in a relatively stable structure of the micelles. During the dialysis process
the solvent within the micelle diffuses outward while water is difficult into the micelles
causing the micelle to collapse and form a pit structure. As the solvent further diffuses
the pit becomes larger
ultimately leading to a bowl-like aggregate structure. Increasing the length of the PBLG makes the initial micelles more stable
which inhibits the collapse of the micelles under the dialysis process
as a result
ellipsoid micelles are maintained. The stability of the initial formed micelle is crucial in determining whether it undergoes depression during the subsequent dialysis process
ultimately resulting in the formation of nanobowls.
聚肽卟啉点击反应自组装碗状胶束
PolypeptidesPorphyrinClick reactionSelf-assemblyNanobowls
Kricheldorf H. R. Polypeptides and 100 years of chemistry of α-amino acid N-carboxyanhydrides. Angew. Chem. Int. Ed., 2006, 45(35), 5752-5784. doi:10.1002/anie.200600693http://dx.doi.org/10.1002/anie.200600693
Song Z. Y.; Han Z. Y.; Lv S. X.; Chen C. Y.; Chen L.; Yin L. C.; Cheng J. J. Synthetic polypeptides: from polymer design to supramolecular assembly and biomedical application. Chem. Soc. Rev., 2017, 46(21), 6570-6599. doi:10.1039/c7cs00460ehttp://dx.doi.org/10.1039/c7cs00460e
Lu H.; Wang J.; Song Z. Y.; Yin L. C.; Zhang Y. F.; Tang H. Y.; Tu C. L.; Lin Y.; Cheng J. J. Recent advances in amino acid N-carboxyanhydrides and synthetic polypeptides: chemistry, self-assembly and biological applications. Chem. Commun., 2014, 50(2), 139-155. doi:10.1039/c3cc46317fhttp://dx.doi.org/10.1039/c3cc46317f
Carlsen A.; Lecommandoux S. Self-assembly of polypeptide-based block copolymer amphiphiles. Curr. Opin. Colloid Interface Sci., 2009, 14(5), 329-339. doi:10.1016/j.cocis.2009.04.007http://dx.doi.org/10.1016/j.cocis.2009.04.007
Bonduelle C. Secondary structures of synthetic polypeptide polymers. Polym. Chem., 2018, 9(13), 1517-1529. doi:10.1039/c7py01725ahttp://dx.doi.org/10.1039/c7py01725a
Ji S. F.; Xu L. L.; Fu X. H.; Sun J.; Li Z. B. Light- and metal ion-induced self-assembly and reassembly based on block copolymers containing a photoresponsive polypeptide segment. Macromolecules, 2019, 52(12), 4686-4693. doi:10.1021/acs.macromol.9b00475http://dx.doi.org/10.1021/acs.macromol.9b00475
Tsuchiya K.; Numata K. Chemical synthesis of multiblock copolypeptides inspired by spider dragline silk proteins. ACS Macro Lett., 2017, 6(2), 103-106. doi:10.1021/acsmacrolett.7b00006http://dx.doi.org/10.1021/acsmacrolett.7b00006
Bose A.; Jana S.; Saha A.; Mandal T. K. Amphiphilic polypeptide-polyoxazoline graft copolymer conjugate with tunable thermoresponsiveness: synthesis and self-assembly into various micellar structures in aqueous and nonaqueous media. Polymer, 2017, 110, 12-24. doi:10.1016/j.polymer.2016.12.068http://dx.doi.org/10.1016/j.polymer.2016.12.068
Zhen J. B.; Zhao M. H.; Ge Y.; Liu Y.; Xu L. W.; Chen C.; Gong Y. K.; Yang K. W. Construction, mechanism, and antibacterial resistance insight into polypeptide-based nanoparticles. Biomater. Sci., 2019, 7(10), 4142-4152. doi:10.1039/c9bm01050ehttp://dx.doi.org/10.1039/c9bm01050e
Lu D. D.; Wang H. S.; Wang X. Y.; Li Y. F.; Guo H. Y.; Sun S. B.; Zhao X. L.; Yang Z. W.; Lei Z. Q. Biomimetic chitosan-graft-polypeptides for improved adhesion in tissue and metal. Carbohydr. Polym., 2019, 215, 20-28. doi:10.1016/j.carbpol.2019.03.065http://dx.doi.org/10.1016/j.carbpol.2019.03.065
Karatzas A.; Haataja J. S.; Skoulas D.; Bilalis P.; Varlas S.; Apostolidi P.; Sofianopoulou S.; Stratikos E.; Houbenov N.; Ikkala O.; Iatrou H. Marcromolecular architecture and encapsulation of the anticancer drug everolimus control the self-assembly of amphiphilic polypeptide-containing hybrids. Biomacromolecules, 2019, 20(12), 4546-4562. doi:10.1021/acs.biomac.9b01331http://dx.doi.org/10.1021/acs.biomac.9b01331
Chen J. J.; Ding J. X.; Wang Y. C.; Cheng J. J.; Ji S. X.; Zhuang X. L.; Chen X. S. Sequentially responsive shell-stacked nanoparticles for deep penetration into solid tumors. Adv. Mater., 2017, 29(32), 1701170. doi:10.1002/adma.201701170http://dx.doi.org/10.1002/adma.201701170
Wang M. Y.; Xu L. L.; Lin M.; Li Z. B.; Sun J. Fabrication of reversible pH-responsive aggregation-induced emission luminogens assisted by a block copolymer via a dynamic covalent bond. Polym. Chem., 2021, 12(19), 2825-2831. doi:10.1039/d1py00312ghttp://dx.doi.org/10.1039/d1py00312g
Chen C. Y.; Liu Q. A. Virus-like particles with tunable morphology derived from amphiphilic polyplexes. Soft Mater., 2017, 15(2), 191-195. doi:10.1080/1539445x.2017.1307223http://dx.doi.org/10.1080/1539445x.2017.1307223
Lu Y. Q.; Lin J. P.; Wang L. Q.; Zhang L. S.; Cai C. H. Self-assembly of copolymer micelles: higher-level assembly for constructing hierarchical structure. Chem. Rev., 2020, 120(9), 4111-4140. doi:10.1021/acs.chemrev.9b00774http://dx.doi.org/10.1021/acs.chemrev.9b00774
Cai C. H.; Lin J. P.; Lu Y. Q.; Zhang Q.; Wang L. Q. Polypeptide self-assemblies: nanostructures and bioapplications. Chem. Soc. Rev., 2016, 45(21), 5985-6012. doi:10.1039/c6cs00013dhttp://dx.doi.org/10.1039/c6cs00013d
李怡静, 龚雪峰, 王冬, 杨洲, 曹晖, 王磊. 基于多肽的药物递送系统研究进展. 高分子学报, 2022, 53(5), 445-456. doi:10.11777/j.issn1000-3304.2021.21369http://dx.doi.org/10.11777/j.issn1000-3304.2021.21369
Shu W. C.; Liu Z.; Xie Y. C.; Shi X. J.; Qi S.; Xu M.; He X. H. Regulating the morphology and size of homopolypeptide self-assemblies via selective solvents. Soft Matter, 2021, 17(30), 7118-7123. doi:10.1039/d1sm00679ghttp://dx.doi.org/10.1039/d1sm00679g
Lin X.; He X. H.; Hu C. Q.; Chen Y. X.; Mai Y. Y.; Lin S. L. Disk-like micelles with cylindrical pores from amphiphilic polypeptide block copolymers. Polym. Chem., 2016, 7(16), 2815-2820. doi:10.1039/c6py00152ahttp://dx.doi.org/10.1039/c6py00152a
Xu W. H.; Xu Z. W.; Cai C. H.; Lin J. P.; Gao L. A.; Qi H. M.; Lin S. L. Spiral- and meridian-patterned spheres self-assembled from block copolymer/homopolymer binary systems. Nanoscale, 2021, 13(33), 14016-14022. doi:10.1039/d1nr02674ghttp://dx.doi.org/10.1039/d1nr02674g
Xu P. F.; Gao L.; Cai C. H.; Lin J. P.; Wang L. Q.; Tian X. H. Helical toroids self-assembled from a binary system of polypeptide homopolymer and its block copolymer. Angew. Chem. Int. Ed., 2020, 59(34), 14281-14285. doi:10.1002/anie.202004102http://dx.doi.org/10.1002/anie.202004102
Xu W. H.; Xu Z. W.; Cai C. H.; Lin J. P.; Zhang S. M.; Zhang L. S.; Lin S. L.; Yao Y. A.; Qi H. M. Ordered surface nanostructures self-assembled from rod-coil block copolymers on microspheres. J. Phys. Chem. Lett., 2019, 10(20), 6375-6381. doi:10.1021/acs.jpclett.9b02606http://dx.doi.org/10.1021/acs.jpclett.9b02606
Hu R.; Cai C. H.; Lin J. P.; Gao L. A. Chirality of superhelices self-assembled from polypeptide mixtures. Macromolecules, 2022, 55(11), 4297-4304. doi:10.1021/acs.macromol.1c02639http://dx.doi.org/10.1021/acs.macromol.1c02639
Zhuang Z. L.; Jiang T.; Lin J. P.; Gao L.; Yang C. Y.; Wang L. Q.; Cai C. H. Hierarchical nanowires synthesized by supramolecular stepwise polymerization. Angew. Chem. Int. Ed., 2016, 55(40), 12522-12527. doi:10.1002/anie.201607059http://dx.doi.org/10.1002/anie.201607059
Yao Y. K.; Gao L.; Cai C. H.; Lin J. P.; Lin S. L. Supramolecular polymerization of polymeric nanorods mediated by block copolymers. Angew. Chem. Int. Ed., 2023, 62(9), e202216872. doi:10.1002/anie.202216872http://dx.doi.org/10.1002/anie.202216872
都仕, 张宋奇, 王立权, 林嘉平, 杜磊. 高分子材料基因组: 高分子研发的新方法. 高分子学报, 2022, 53(6), 592-607. doi:10.11777/j.issn1000-3304.2021.21404http://dx.doi.org/10.11777/j.issn1000-3304.2021.21404
Mauzerall D. C. Evolution of porphyrins. Clin. Dermatol., 1998, 16(2), 195-201. doi:10.1016/s0738-081x(97)00200-9http://dx.doi.org/10.1016/s0738-081x(97)00200-9
Wu M. S.; Liu Z. Y.; Zhang W. A. An ultra-stable bio-inspired bacteriochlorin analogue for hypoxia-tolerant photodynamic therapy. Chem. Sci., 2021, 12(4), 1295-1301. doi:10.1039/d0sc05525ehttp://dx.doi.org/10.1039/d0sc05525e
Wang S. P.; Lin W.; Wang X. L.; Cen T. Y.; Xie H. J.; Huang J. Y.; Zhu B. Y.; Zhang Z. B.; Song A. X.; Hao J. C.; Wu J.; Li S. J. Controllable hierarchical self-assembly of porphyrin-derived supra-amphiphiles. Nat. Commun., 2019, 10, 1399. doi:10.1038/s41467-019-09363-yhttp://dx.doi.org/10.1038/s41467-019-09363-y
Liu Y. N.; Wang H.; Li S. L.; Chen C. S.; Xu L.; Huang P.; Liu F.; Su Y.; Qi M. W.; Yu C. Y.; Zhou Y. F. In situ supramolecular polymerization-enhanced self-assembly of polymer vesicles for highly efficient photothermal therapy. Nat. Commun., 2020, 11(1), 1724. doi:10.1038/s41467-020-15427-1http://dx.doi.org/10.1038/s41467-020-15427-1
Sun Y.; Chen C. Y.; Liu J. B.; Liu L. Z.; Tuo W.; Zhu H.; Lu S. A.; Li X. P.; Stang P. J. Self-assembly of porphyrin-based metallacages into octahedra. J. Am. Chem. Soc., 2020, 142(42), 17903-17907. doi:10.1021/jacs.0c08058http://dx.doi.org/10.1021/jacs.0c08058
刘亚洲, 邢蕊蕊, 闫学海. 寡肽组装体及其肿瘤光热免疫治疗应用. 高分子学报, 2022, 53(10), 1173-1186. doi:10.11777/j.issn1000-3304.2022.22221http://dx.doi.org/10.11777/j.issn1000-3304.2022.22221
Cai C. H.; Li Y. L.; Lin J. P.; Wang L. Q.; Lin S. L.; Wang X. S.; Jiang T. Simulation-assisted self-assembly of multicomponent polymers into hierarchical assemblies with varied morphologies. Angew. Chem. Int. Ed., 2013, 52(30), 7732-7736. doi:10.1002/anie.201210024http://dx.doi.org/10.1002/anie.201210024
Zhang S.; Cai C. H.; Guan Z.; Lin J. P.; Zhu X. Y. Fabrication of virus-like particles with strip-pattern surface: a two-step self-assembly approach. Chin. Chem. Lett., 2017, 28(4), 839-844. doi:10.1016/j.cclet.2016.12.040http://dx.doi.org/10.1016/j.cclet.2016.12.040
Cai C. H.; Lin J. P.; Zhu X. Y.; Gong S. T.; Wang X. S.; Wang L. Q. Superhelices with designed helical structures and temperature-stimulated chirality transitions. Macromolecules, 2016, 49(1), 15-22. doi:10.1021/acs.macromol.5b02254http://dx.doi.org/10.1021/acs.macromol.5b02254
Liu Z.; Shi X. J.; Shu W. C.; Qi S.; Wang X. S.; He X. H. The effect of hydration and dehydration on the conformation, assembling behavior and photoluminescence of PBLG. Soft Matter, 2022, 18(23), 4396-4401. doi:10.1039/d2sm00344ahttp://dx.doi.org/10.1039/d2sm00344a
Sun H.; Liu D. Q.; Du J. Z. Nanobowls with controlled openings and interior holes driven by the synergy of hydrogen bonding and π-π interaction. Chem. Sci., 2019, 10(3), 657-664. doi:10.1039/c8sc03995jhttp://dx.doi.org/10.1039/c8sc03995j
Lin S.; Sun H.; Cornel E. J.; Jiang J. H.; Zhu Y. Q.; Fan Z.; Du J. Z. Denting nanospheres with a short peptide. Chinese J. Polym. Sci., 2021, 39(12), 1538-1549. doi:10.1007/s10118-021-2599-7http://dx.doi.org/10.1007/s10118-021-2599-7
Wu T.; Sun H.; Jiang J. H.; Lin S.; Fan L. J.; Hong K.; Sun Q. M.; Hu Y.; Zhu Y. Q.; Du J. Z. Homopolymer nanobowls with a controlled size and denting degree. Polym. Chem., 2022, 13(9), 1236-1242. doi:10.1039/d1py01613jhttp://dx.doi.org/10.1039/d1py01613j
0
浏览量
159
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构