浏览全部资源
扫码关注微信
福州大学石油化工学院 福州 350100
E-mail: xiaolq@fzu.edu.cn
纸质出版日期:2024-02-20,
网络出版日期:2023-12-06,
收稿日期:2023-07-25,
录用日期:2023-10-10
移动端阅览
唐铖涛, 侯琳熙, 肖龙强. 自破乳温敏性高分子表面活性剂的合成及其在乳液聚合中的应用. 高分子学报, 2024, 55(2), 182-191
Tang, C. T.; Hou, L. X.; Xiao, L. Q. Synthesis of self-demulsification thermosensitive polymeric surfactants and their application in emulsion polymerization. Acta Polymerica Sinica, 2024, 55(2), 182-191
唐铖涛, 侯琳熙, 肖龙强. 自破乳温敏性高分子表面活性剂的合成及其在乳液聚合中的应用. 高分子学报, 2024, 55(2), 182-191 DOI: 10.11777/j.issn1000-3304.2023.23197.
Tang, C. T.; Hou, L. X.; Xiao, L. Q. Synthesis of self-demulsification thermosensitive polymeric surfactants and their application in emulsion polymerization. Acta Polymerica Sinica, 2024, 55(2), 182-191 DOI: 10.11777/j.issn1000-3304.2023.23197.
提出了以温敏性表面活性剂作为乳化剂解决乳液聚合反应结束后破乳分离过程繁杂的问题. 通过原子转移自由基聚合(ATRP)合成了聚乙二醇-聚(
N
-异丙基丙烯酰胺) (PEG-
b
-PNIPAM)嵌段共聚物. 该共聚物在室温下表现为亲水性,而在35~80 ℃呈现两亲性. 表面张力和乳化性能等测试证实了其在上述温度区间可作为乳化剂应用于乳液聚合. 在乳液聚合反应完成后无需其他添加剂和方法,只需通过将反应体系降至室温即可实现破乳. 通过使用(PEG-
b
-PNIPAM)嵌段共聚物作为表面活性剂,可以利用温度控制乳化破乳的功能,极大简化了乳液聚合反应工艺,降低成本,实现绿色化生产.
This study proposes utilizing thermosensitive surfactants
referred to as "environmentally responsive surfactants
" as emulsifiers for addressing the complexity of demulsification and separation processes after emulsion polymerization reactions. A series of polyethylene glycol-poly(
N
-isopropylacrylamide) (PEG-
b
-PNIPAM) block copolymers with various degrees of polymerization were synthesized
via
atom transfer radical polymerization (ATRP). The PNIPAM segments within the copolymers exhibit thermosensitive behavior
possessing a lower critical solution temperature (LCST) at 32 ℃
enabling the control of hydrogen bond formation and rupture with water molecules based on temperature variations. Consequently
the PEG-
b
-PNIPAM block copolymers display hydrophilic properties at room temperature and amphiphilic properties in the range from 35 ℃ to 80 ℃. Surface tension measurements at different concentrations confirmed the low critical micelle concentration (CMC) of the PEG-PNIPAM block copolymers
with a minimum value as low as 9.10×10
-3
g/L. Evaluations of particle size distribution and emulsification performance validated its applicability as an emulsifier in emulsion polymerization within the aforementioned temperature range. Microscopic observations of latex particles corroborated the precise occurrence of emulsion polymerization
displaying a relatively uniform particle size distribution in the resulting polymer. Upon completion of the emulsion polymerization reaction
the need for additional agents such as demulsifiers or physical methods like mechanical stirring was obviated. Merely lowering the reaction system to room temperature facilitated demulsification
yielding the desired polymer products. Further
rapid demulsification could be achieved by cooling the reaction system at lower temperatures (3‒8 ℃). Utilizing PEG-
b
-PNIPAM block copolymers as surfactants allowed the temperature-controlled emulsification and demulsification processes
significantly streamlining the emulsion polymerization process
reducing costs
and enabling environmentally friendly production practices.
温敏性表面活性剂乳液聚合嵌段共聚物自破乳
Thermosensitive surfactantEmulsion polymerizationBlock copolymerSelf-demulsification
Lovell P. A.; Schork F. J. Fundamentals of emulsion polymerization. Biomacromolecules, 2020, 21(11), 4396-4441. doi:10.1021/acs.biomac.0c00769http://dx.doi.org/10.1021/acs.biomac.0c00769
Chern C. S. Emulsion polymerization mechanisms and kinetics. Prog. Polym. Sci., 2006, 31(5), 443-486. doi:10.1016/j.progpolymsci.2006.02.001http://dx.doi.org/10.1016/j.progpolymsci.2006.02.001
Pereira S. O.; Trindade T.; Barros-Timmons A. Impact of critical micelle concentration of macroRAFT agents on the encapsulation of colloidal Au nanoparticles. J. Colloid Interface Sci., 2019, 545, 251-258. doi:10.1016/j.jcis.2019.03.034http://dx.doi.org/10.1016/j.jcis.2019.03.034
Wang Q.; Shoukuan Fu, Yu T. Y. Emulsion polymerization. Prog. Polym. Sci., 1994, 19(4), 703-753. doi:10.1016/0079-6700(94)90031-0http://dx.doi.org/10.1016/0079-6700(94)90031-0
Lin Y.; Ng K. M.; Chan C. M.; Sun G. X.; Wu J. S. High-impact polystyrene/halloysite nanocomposites prepared by emulsion polymerization using sodium dodecyl sulfate as surfactant. J. Colloid Interface Sci., 2011, 358(2), 423-429. doi:10.1016/j.jcis.2011.03.009http://dx.doi.org/10.1016/j.jcis.2011.03.009
乔晋忠, 张巧玲, 程原. 细乳液聚合法合成高分子量聚乙烯醇的研究. 高分子学报, 2007, (2), 124-129. doi:10.3321/j.issn:1000-3304.2007.02.006http://dx.doi.org/10.3321/j.issn:1000-3304.2007.02.006
Cho C. G.; Lee K. Preparation of starch-g-polystyrene copolymer by emulsion polymerization. Carbohydr. Polym., 2002, 48(2), 125-130. doi:10.1016/s0144-8617(01)00222-3http://dx.doi.org/10.1016/s0144-8617(01)00222-3
张慧婷, 刘艳萍, 李晓娟, 喻发全. 超浓反相聚合物乳液的粒径双峰分布特征及其与稳定性的关系. 高分子学报, 2011, (8), 832-837.
Wan T.; Zang T. S.; Wang Y. C.; Zhang R.; Sun X. C. Preparation of water soluble Am-AA-SSS copolymers by inverse microemulsion polymerization. Polym. Bull., 2010, 65(6), 565-576. doi:10.1007/s00289-009-0234-9http://dx.doi.org/10.1007/s00289-009-0234-9
Yuki K.; Sato T.; Maruyama H.; Yamauchi J.; Okaya T. The role of polyvinyl alcohol in emulsion polymerization. Polym. Int., 1993, 30(4), 513-517. doi:10.1002/pi.4990300415http://dx.doi.org/10.1002/pi.4990300415
曹亚, 李惠林, 徐僖. 羧甲基纤维素系列高分子表面活性剂的嵌段结构对其形态和性能的影响. 高分子学报, 2001, (1), 3-7. doi:10.3321/j.issn:1000-3304.2001.01.001http://dx.doi.org/10.3321/j.issn:1000-3304.2001.01.001
Wang G. L.; Cai G. T.; Zhang M. H.; Wang Z. Y.; Li C. F.; Zhang Y. W. Synthesis of polymeric emulsifiers based on ketoaldehyde resin and their application in emulsifying styrene/water two-phase system. J. Appl. Polym. Sci., 2022, 139(19), 52107. doi:10.1002/app.52107http://dx.doi.org/10.1002/app.52107
Bao Y.; Guo J. J.; Ma J. Z.; Li M.; Li X. L. Physicochemical and antimicrobial activities of cationic gemini surfactants with polyether siloxane linked group. J. Mol. Liq., 2017, 242, 8-15. doi:10.1016/j.molliq.2017.06.049http://dx.doi.org/10.1016/j.molliq.2017.06.049
Wang Y. B.; Du C. C.; Yan Z. F.; Duan W. H.; Deng J.; Luo G. S. Rapid demulsification and phase separation in a miniaturized centrifugal demulsification device. Chem. Eng. J., 2022, 446, 137276. doi:10.1016/j.cej.2022.137276http://dx.doi.org/10.1016/j.cej.2022.137276
Harjani J. R.; Liang C.; Jessop P. G. A synthesis of acetamidines. J. Org. Chem., 2011, 76(6), 1683-1691. doi:10.1021/jo102358dhttp://dx.doi.org/10.1021/jo102358d
Guo Z. R.; Feng Y. J.; Wang Y.; Wang J. Y.; Wu Y. F.; Zhang Y. M. A novel smart polymer responsive to CO2. Chem. Commun., 2011, 47(33), 9348-9350. doi:10.1039/c1cc12388bhttp://dx.doi.org/10.1039/c1cc12388b
Zhai Z. L.; Xu J.; Yan X. Y.; Song Z. Q.; Shang S. B.; Rao X. P. pH-responsive foams based on a transition between a bola surfactant and a traditional surfactant. J. Mol. Liq., 2020, 298, 111968. doi:10.1016/j.molliq.2019.111968http://dx.doi.org/10.1016/j.molliq.2019.111968
Pei X. M.; Zhang S.; Zhang W. Q.; Liu P.; Song B. L.; Jiang J. Z.; Cui Z. G.; Binks B. P. Behavior of smart surfactants in stabilizing pH-responsive emulsions. Angew. Chem. Int. Ed., 2021, 60(10), 5235-5239. doi:10.1002/anie.202013443http://dx.doi.org/10.1002/anie.202013443
Scermino L.; Fabozzi A.; De Tommaso G.; Valente A. J. M.; Iuliano M.; Paduano L.; D'Errico G. pH-responsive micellization of an amine oxide surfactant with branched hydrophobic tail. J. Mol. Liq., 2020, 316, 113799. doi:10.1016/j.molliq.2020.113799http://dx.doi.org/10.1016/j.molliq.2020.113799
Zhai Z. L.; Ye S. F.; Yan X. Y.; Song Z. Q.; Shang S. B.; Rao X. P.; Song J. E. pH-responsive wormlike micelles formed by an anionic surfactant derived from rosin. J. Agric. Food Chem., 2020, 68(37), 10063-10070. doi:10.1021/acs.jafc.0c03749http://dx.doi.org/10.1021/acs.jafc.0c03749
Tu Y.; Chen Q. Z.; Shang Y. Z.; Teng H. N.; Liu H. L. Photoresponsive behavior of wormlike micelles constructed by gemini surfactant 12-3-12·2Br- and different cinnamate derivatives. Langmuir, 2019, 35(13), 4634-4645.
Yang X. Y.; Azhar U.; Wang W.; Zhai C. C.; Zhang Q. S.; Zhang S. X.; Zong C. Y. Photo-responsive azobenzene-based surfactants as fast-phototuning foam switch synthesized via thiol-ene click chemistry. Colloids Surf. A, 2021, 609, 125645. doi:10.1016/j.colsurfa.2020.125645http://dx.doi.org/10.1016/j.colsurfa.2020.125645
Zhou S. J.; Sheng K.; Zhang N.; Yuan S. D.; Feng N.; Song Y. X.; Geng J. F.; Xin X. Reversible demulsification and emulsification of surfactant emulsions regulated by light-responsive azo functionalized copper nanoclusters. J. Mol. Liq., 2022, 367, 120384. doi:10.1016/j.molliq.2022.120384http://dx.doi.org/10.1016/j.molliq.2022.120384
Li H. X.; Liu Y. S.; Jiang J. Z. CO2-responsive surfactants for switchable Pickering emulsions with a recyclable aqueous phase. Green Chem., 2022, 24(20), 8062-8068. doi:10.1039/d2gc02630ahttp://dx.doi.org/10.1039/d2gc02630a
Liu Y.; Zhao Y. F.; Jiang N.; Cheng W.; Lu D. W.; Zhang T. Separate reclamation of oil and surfactant from oil-in-water emulsion with a CO2-responsive material. Environ. Sci. Technol., 2022, 56(13), 9651-9660. doi:10.1021/acs.est.1c08149http://dx.doi.org/10.1021/acs.est.1c08149
Zhang M. S.; Nan Y. L.; Lu Y.; You Q.; Jin Z. H. CO2-responsive surfactant for oil-in-water emulsification and demulsification from molecular perspectives. Fuel, 2023, 331, 125773. doi:10.1016/j.fuel.2022.125773http://dx.doi.org/10.1016/j.fuel.2022.125773
Jia H.; He J.; Wang Q. X.; Xu Y. B.; Zhang L. Y.; Jia H. D.; Song L.; Wang Y. B.; Xie Q. Y.; Wu H. Y. Investigation on novel redox-responsive ferrocenyl surfactants with reversible interfacial behavior and their recycling application for enhanced oil recovery. Colloids Surf. A, 2022, 653, 129971. doi:10.1016/j.colsurfa.2022.129971http://dx.doi.org/10.1016/j.colsurfa.2022.129971
Kong W. W.; Guo S. A.; Wu S. Q.; Liu X. F.; Zhang Y. M. Redox-controllable interfacial properties of zwitterionic surfactant featuring selenium atoms. Langmuir, 2016, 32(38), 9846-9853. doi:10.1021/acs.langmuir.6b02616http://dx.doi.org/10.1021/acs.langmuir.6b02616
Ni C.; Wang Y. Y.; Hou Q. F.; Li X. X.; Zhang Y.; Wang Y.; Xu Y.; Zhao Y. J. Phase transformation of thermoresponsive surfactant triggered by its concentration and temperature. J. Petrol. Sci. Eng., 2020, 193, 107410. doi:10.1016/j.petrol.2020.107410http://dx.doi.org/10.1016/j.petrol.2020.107410
Zhang C. Y.; Chen W.; Hong Y. M.; Wang X. P. Surface activity and structure of temperature-responsive polymer surfactants based on PNIPAm at the air/solution interface. Langmuir, 2021, 37(15), 4632-4638. doi:10.1021/acs.langmuir.1c00320http://dx.doi.org/10.1021/acs.langmuir.1c00320
Han C. H.; Guo Y.; Chen X. X.; Yao M. H.; Zhang Y. T.; Zhang Q. R.; Wei X. L. Phase behaviour and temperature-responsive properties of a gemini surfactant/Brij-30/water system. Soft Matter, 2017, 13(6), 1171-1181. doi:10.1039/c6sm02654khttp://dx.doi.org/10.1039/c6sm02654k
张青松, 彭喆, 张库, 陈莉, 赵义平. 亲水链段长度对液晶模板水凝胶形态和温敏性的影响. 高分子学报, 2013, (7), 841-848. doi:10.3724/SP.J.1105.2013.12275http://dx.doi.org/10.3724/SP.J.1105.2013.12275
Jiao W. X.; Wang Z.; Liu T. Q.; Li X. F.; Dong J. F. pH and light dual stimuli-responsive wormlike micelles with a novel Gemini surfactant. Colloids Surf. A, 2021, 618, 126505. doi:10.1016/j.colsurfa.2021.126505http://dx.doi.org/10.1016/j.colsurfa.2021.126505
Lin C. X.; Yang L.; Xu M. C.; An Q.; Xiang Z.; Liu X. Y. Properties and applications of designable and photo/redox dual responsive surfactants with the new head group 2-arylazo-imidazolium. RSC Adv., 2016, 6(57), 51552-51561. doi:10.1039/c6ra04448dhttp://dx.doi.org/10.1039/c6ra04448d
Jiang J. Z.; Zhang D. Y.; Yin J. C.; Cui Z. G. Responsive, switchable wormlike micelles for CO2/N2 and redox dual stimuli based on selenium-containing surfactants. Soft Matter, 2017, 13(37), 6458-6464. doi:10.1039/c7sm01308fhttp://dx.doi.org/10.1039/c7sm01308f
卢烁, 杨东杰, 李圆圆, 李致贤, 邱学青. 季铵化木质素与纳米二氧化钛协同稳定的双重pH响应性Pickering乳液. 高分子学报, 2019, 50(2), 160-169. doi:10.11777/j.issn1000-3304.2018.18211http://dx.doi.org/10.11777/j.issn1000-3304.2018.18211
Su X.; Cunningham M. F.; Jessop P. G. Switchable viscosity triggered by CO2 using smart worm-like micelles. Chem. Commun., 2013, 49(26), 2655-2657. doi:10.1039/c3cc37816khttp://dx.doi.org/10.1039/c3cc37816k
Takahashi Y.; Fukuyasu K.; Horiuchi T.; Kondo Y.; Stroeve P. Photoinduced demulsification of emulsions using a photoresponsive gemini surfactant. Langmuir, 2014, 30(1), 41-47. doi:10.1021/la4034782http://dx.doi.org/10.1021/la4034782
Li L. Y.; He W. D.; Li J. A.; Zhang B. Y.; Pan T. T.; Sun X. L.; Ding Z. L. Shell-cross-linked micelles from PNIPAM-b-(PLL)2 Y-shaped miktoarm star copolymer as drug carriers. Biomacromolecules, 2010, 11(7), 1882-1890. doi:10.1021/bm1004383http://dx.doi.org/10.1021/bm1004383
邓伟, 王晓工. 一种含乙氧羰基偶氮苯液晶三嵌段共聚物的合成与表征. 高分子学报, 2008, (11), 1118-1122. doi:10.3321/j.issn:1000-3304.2008.11.016http://dx.doi.org/10.3321/j.issn:1000-3304.2008.11.016
0
浏览量
217
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构