浏览全部资源
扫码关注微信
1.苏州大学材料与化学化工学部 苏州 215123
2.华南理工大学前沿软物质学院 广州 510640
Rui Tan, E-mail: ruitan@suda.edu.cn
xdong@scut.edu.cn
zhangzhengbiao@suda.edu.cn
纸质出版日期:2024-02-20,
网络出版日期:2023-12-27,
收稿日期:2023-07-28,
录用日期:2023-11-06
移动端阅览
吴海兵, 蒋胜喜, 谭睿, 刘雨欣, 董学会, 张正彪. 单一分子量含氟嵌段共聚物的本体及薄膜自组装研究. 高分子学报, 2024, 55(2), 142-152
Wu, H. B.; Jiang, S. X.; Tan, R.; Liu, Y. X.; Dong, X. H.; Zhang, Z. B. Investigation of bluk and thin-film self-assembly using discrete fluorine-containing block copolymers. Acta Polymerica Sinica, 2024, 55(2), 142-152
吴海兵, 蒋胜喜, 谭睿, 刘雨欣, 董学会, 张正彪. 单一分子量含氟嵌段共聚物的本体及薄膜自组装研究. 高分子学报, 2024, 55(2), 142-152 DOI: 10.11777/j.issn1000-3304.2023.23200.
Wu, H. B.; Jiang, S. X.; Tan, R.; Liu, Y. X.; Dong, X. H.; Zhang, Z. B. Investigation of bluk and thin-film self-assembly using discrete fluorine-containing block copolymers. Acta Polymerica Sinica, 2024, 55(2), 142-152 DOI: 10.11777/j.issn1000-3304.2023.23200.
嵌段共聚物导向自组装作为一种自下而上的图案化工艺,受到工业界和学术界的广泛关注. 然而,导向自组装中缺陷率与分子参数之间的关系研究尚不清晰. 本文工作基于模块化合成策略,利用迭代指数增长法并结合巯基-双键的点击反应成功制备了高
χ
低
N
的单一分子量含氟聚酯嵌段共聚物(
o
LA
n
-FPOSS). 单一分子量特征可以排除多分散性对自组装行为的影响. 本体自组装研究表明聚酯嵌段和含氟嵌段具有强相分离驱动力,可以形成特征尺寸小于10 nm的六方柱状相结构(HEX). 在薄膜自组装中,嵌段共聚物经过简单的热退火可以在硅片表面形成平行基底排布的柱状纳米图案. 此外,通过对比研究不同链长单一分子量嵌段共聚物的薄膜组装行为,发现随着嵌段共聚物链长的增长薄膜组装图形缺陷率明显下降,初步揭示了薄膜自组装过程中缺陷形成对嵌段共聚物链长的依赖性.
Directed self-assembly of block copolymers has arouse tremendous interest from academy and industry as a bottom-up patterning process to fabricate versatile nanostructures. However
the underlying principles between molecular parameters and defectivities in directed self-assembly are still unambiguous due to the limitations of traditional polydisperse polymer models. Discrete polymer with defined molecular structure and uniform chain length are ideal candidates to reveal the fundamental principles. In this study
based on the modular synthesis strategy
discrete fluorine-containing polyester block copolymers (
o
LA
n
-FPOSS) with high
χ
-low
N
were firstly prepared by iterative exponential growth in combination with the thiol-ene click reaction. Owing to the discrete feature
the influence of polydisperse molecular parameters including composition
molecular weight and distribution on self-assembly behaviors can be completely excluded. Consequently
the impacts of molecular structures on the evolution of phase segregation can be quantitatively revealed. Due to the strong segregation strength
hexagonally packed cylindrical nanostructures (HEX) less than 10 nm can be formed in bulk and the phase stability increases with the chain length of
o
LA block. In thin-film self-assembly
parallelly oriented cylindrical nanopatterns on Si substrate were clearly identified after brief annealing under vacuum. In addition
through comparative studies of thin-film self-assembly behaviors of discrete block copolymers with different chain lengths
the nanopattern defectivity decreased significantly with the increase of
o
LA block chain length
which initially revealed the dependence of defect formation on block copolymer chain length in thin-film self-assembly.
单一分子量高分子导向自组装含氟嵌段共聚物本体及薄膜自组装光刻
Discrete polymerDirected self-assemblyFluorine-containing block copolymerBulk and thin film self-assemblyLithography
Wagner C.; Harned, N. Lithography gets extreme. Nat. Photonics, 2010, 4(1), 24-26. doi:10.1038/nphoton.2009.251http://dx.doi.org/10.1038/nphoton.2009.251
Pan D. Z. Directed self-assembly for advanced chips. Nat. Electron., 2018, 1(10), 530-531. doi:10.1038/s41928-018-0152-7http://dx.doi.org/10.1038/s41928-018-0152-7
Huang X. H.; Xiong S. S. Advanced lithography: directed self-assembly. Chin. J. Appl. Chem., 2021, 38, 1029.
Somervell M.; Kitano T. Driving DSA into volume manufacturing. Proc. SPIE, 2015, 942594250Q. doi:10.1117/12.2085776http://dx.doi.org/10.1117/12.2085776
Wan L.; Ruiz R.; Gao H.; Patel K. C.; Albrecht T. R.; Yin J.; Kim J.; Cao Y.; Lin G. Y. The limits of lamellae-forming PS-b-PMMA block copolymers for lithography. ACS Nano, 2015, 9(7), 7506-7514. doi:10.1021/acsnano.5b02613http://dx.doi.org/10.1021/acsnano.5b02613
Zhao Y. E.; Sivaniah E.; Hashimoto T. SAXS analysis of the order-disorder transition and the interaction parameter of polystyrene-block-poly(methyl methacrylate). Macromolecules, 2008, 41(24), 9948-9951. doi:10.1021/ma8013004http://dx.doi.org/10.1021/ma8013004
Russell T. P.; Hjelm, R. P. Jr Seeger, Temperature dependence of the interaction parameter of polystyrene and poly(methyl methacrylate). Macromolecules, 1990, 23(3), 890-893. doi:10.1021/ma00205a033http://dx.doi.org/10.1021/ma00205a033
Matsen M. W.; Bates F. S. Unifying weak- and strong-segregation block copolymer theories. Macromolecules, 1996, 29(4), 1091-1098. doi:10.1021/ma951138ihttp://dx.doi.org/10.1021/ma951138i
Chen Y.; Xiong S. S. Directed self-assembly of block copolymers for sub-10 nm fabrication. Int. J. Extrem. Manuf., 2020, 2(3), 032006. doi:10.1088/2631-7990/aba3aehttp://dx.doi.org/10.1088/2631-7990/aba3ae
Cummins C.; Pino G.; Mantione D.; Fleury G. Engineering block copolymer materials for patterning ultra-low dimensions. Mol. Syst. Des. Eng., 2020, 5(10), 1642-1657. doi:10.1039/d0me00118jhttp://dx.doi.org/10.1039/d0me00118j
Lo T. Y.; Krishnan M. R.; Lu K. Y.; Ho R. M. Silicon-containing block copolymers for lithographic applications. Prog. Polym. Sci., 2018, 77, 19-68. doi:10.1016/j.progpolymsci.2017.10.002http://dx.doi.org/10.1016/j.progpolymsci.2017.10.002
Pino G.; Cummins C.; Mantione D.; Demazy N.; Alvarez-Fernandez A.; Guldin S.; Fleury G.; Hadziioannou G.; Cloutet E.; Brochon C. Design and morphological investigation of high-χ catechol-containing styrenic block copolymers. Macromolecules, 2022, 55(15), 6341-6350. doi:10.1021/acs.macromol.2c00476http://dx.doi.org/10.1021/acs.macromol.2c00476
Mishra A. K.; Lee J.; Kang S.; Kim E.; Choi C.; Kim J. K. Gallol-based block copolymer with a high flory-huggins interaction parameter for next-generation lithography. Macromolecules, 2022, 55(24), 10797-10803. doi:10.1021/acs.macromol.2c01633http://dx.doi.org/10.1021/acs.macromol.2c01633
Jo S.; Jeon S.; Kim H.; Ryu C. Y.; Lee S.; Ryu D. Y. Balanced interfacial interactions for fluoroacrylic block copolymer films and fast electric field directed assembly. Chem. Mater., 2020, 32(22), 9633-9641. doi:10.1021/acs.chemmater.0c03251http://dx.doi.org/10.1021/acs.chemmater.0c03251
Li X. M.; Li J.; Wang C. X.; Liu Y. Y.; Deng H. Fast self-assembly of polystyrene-b-poly(fluoro methacrylate) into sub-5 nm microdomains for nanopatterning applications. J. Mater. Chem. C, 2019, 7(9), 2535-2540. doi:10.1039/c8tc06480fhttp://dx.doi.org/10.1039/c8tc06480f
Jo S.; Jeon S.; Jun T.; Park C.; Ryu D. Y. Fluorine-containing styrenic block copolymers toward high χ and perpendicular lamellae in thin films. Macromolecules, 2018, 51(18), 7152-7159. doi:10.1021/acs.macromol.8b01325http://dx.doi.org/10.1021/acs.macromol.8b01325
Nakatani R.; Takano H.; Chandra A.; Yoshimura Y.; Wang L.; Suzuki Y.; Tanaka Y.; Maeda R.; Kihara N.; Minegishi S.; Miyagi K.; Kasahara Y.; Sato H.; Seino Y.; Azuma T.; Yokoyama H.; Ober C. K.; Hayakawa T. Perpendicular orientation control without interfacial treatment of RAFT-synthesized high-χ block copolymer thin films with sub-10 nm features prepared via thermal annealing. ACS Appl. Mater. Interfaces, 2017, 9(37), 31266-31278. doi:10.1021/acsami.6b16129http://dx.doi.org/10.1021/acsami.6b16129
Li X. M.; Deng H. Poly(2-vinylpyridine)-b-poly(fluorinated methacrylate) block copolymers forming 5 nm domains containing metallocene. ACS Appl. Polym. Mater., 2020, 2(8), 3601-3611. doi:10.1021/acsapm.0c00608http://dx.doi.org/10.1021/acsapm.0c00608
Cummins C.; Mantione D.; Cruciani F.; Pino G.; Demazy N.; Shi Y. L.; Portale G.; Hadziioannou G.; Fleury G. Rapid self-assembly and sequential infiltration synthesis of high χ fluorine-containing block copolymers. Macromolecules, 2020, 53(15), 6246-6254. doi:10.1021/acs.macromol.0c01148http://dx.doi.org/10.1021/acs.macromol.0c01148
Hillmyer M. A.; Lodge T. P. Synthesis and self-assembly of fluorinated block copolymers. J. Polym. Sci. Poly. Chem., 2002, 40(1), 1-8. doi:10.1002/pola.10074http://dx.doi.org/10.1002/pola.10074
Zhu S. X.; Edmonds W. F.; Hillmyer M. A.; Lodge T. P. Synthesis and self-assembly of highly incompatible polybutadiene-poly(hexafluoropropylene oxide) diblock copolymers. J. Polym. Sci. Poly. Phys., 2005, 43(24), 3685-3694. doi:10.1002/polb.20621http://dx.doi.org/10.1002/polb.20621
Wang C. X.; Li X. M.; Deng H. Synthesis of a fluoromethacrylate hydroxystyrene block copolymer capable of rapidly forming sub-5 nm domains at low temperatures. ACS Macro Lett., 2019, 8(4), 368-373. doi:10.1021/acsmacrolett.9b00178http://dx.doi.org/10.1021/acsmacrolett.9b00178
Ren Y.; Lodge T. P.; Hillmyer M. A. Synthesis, characterization, and interaction strengths of difluorocarbene-modified polystyrene-polyisoprene block copolymers. Macromolecules, 2000, 33(3), 866-876. doi:10.1021/ma9917085http://dx.doi.org/10.1021/ma9917085
Takahashi H.; Laachi N.; Delaney K. T.; Hur S. M.; Weinheimer C. J.; Shykind D.; Fredrickson G. H. Defectivity in laterally confined lamella-forming diblock copolymers: thermodynamic and kinetic aspects. Macromolecules, 2012, 45(15), 6253-6265. doi:10.1021/ma300993xhttp://dx.doi.org/10.1021/ma300993x
Herr D. J. C. Directed block copolymer self-assembly for nanoelectronics fabrication. J. Mater. Res., 2011, 26(2), 122-139. doi:10.1557/jmr.2010.74http://dx.doi.org/10.1557/jmr.2010.74
Maeda R.; Hayakawa T.; Ober C. K. Dual mode patterning of fluorine-containing block copolymers through combined top-down and bottom-up lithography. Chem. Mater., 2012, 24(8), 1454-1461. doi:10.1021/cm300093ehttp://dx.doi.org/10.1021/cm300093e
Hu T. Y.; Ren Y. Z.; Li W. H. Annihilation kinetics of an interacting 5/7-dislocation pair in the hexagonal cylinders of AB diblock copolymer. Macromolecules, 2022, 55(17), 7583-7593. doi:10.1021/acs.macromol.2c01403http://dx.doi.org/10.1021/acs.macromol.2c01403
Hu T. Y.; Ren Y. Z.; Li W. H. Impact of molecular asymmetry of block copolymers on the stability of defects in aligned lamellae. Macromolecules, 2021, 54(17), 8024-8032. doi:10.1021/acs.macromol.1c01192http://dx.doi.org/10.1021/acs.macromol.1c01192
Hur S. M.; Thapar V.; Ramírez-Hernández A.; Khaira G.; Segal-Peretz T.; Rincon-Delgadillo P. A.; Li W. H.; Müller M.; Nealey P. F.; de Pablo J. J. Molecular pathways for defect annihilation in directed self-assembly. Proc. Natl. Acad. Sci. U. S. A., 2015, 112(46), 14144-14149. doi:10.1073/pnas.1508225112http://dx.doi.org/10.1073/pnas.1508225112
Nagpal U.; Müller M.; Nealey P. F.; de Pablo J. J. Free energy of defects in ordered assemblies of block copolymer domains. ACS Macro Lett., 2012, 1(3), 418-422. doi:10.1021/mz200245shttp://dx.doi.org/10.1021/mz200245s
Li W. H.; Nealey P. F.; de Pablo J. J.; Müller M. Defect removal in the course of directed self-assembly is facilitated in the vicinity of the order-disorder transition. Phys. Rev. Lett., 2014, 113(16), 168301. doi:10.1103/physrevlett.113.168301http://dx.doi.org/10.1103/physrevlett.113.168301
Hu T. Y.; Ren Y. Z.; Zhang L. S.; Li W. H. Impact of architecture of symmetric block copolymers on the stability of a dislocation defect. Macromolecules, 2021, 54(2), 773-782. doi:10.1021/acs.macromol.0c01654http://dx.doi.org/10.1021/acs.macromol.0c01654
Li J. J.; Rincon-Delgadillo P. A.; Suh H. S.; Mannaert G.; Nealey P. F. Understanding kinetics of defect annihilation in chemoepitaxy-directed self-assembly. ACS Appl. Mater. Interfaces, 2021, 13(21), 25357-25364. doi:10.1021/acsami.1c03830http://dx.doi.org/10.1021/acsami.1c03830
Bates C. M.; Maher M. J.; Janes D. W.; Ellison C. J.; Willson C. G. Block copolymer lithography. Macromolecules, 2014, 47(1), 2-12. doi:10.1021/ma401762nhttp://dx.doi.org/10.1021/ma401762n
Lynd N. A.; Meuler A. J.; Hillmyer M. A. Polydispersity and block copolymer self-assembly. Prog. Polym. Sci., 2008, 33(9), 875-893. doi:10.1016/j.progpolymsci.2008.07.003http://dx.doi.org/10.1016/j.progpolymsci.2008.07.003
Duan S. H.; Yang X. J.; Yang Z.; Liu Y. X.; Shi Q. N.; Yang Z. L.; Wu H. B.; Han Y. E.; Wang Y. Q.; Shen H.; Huang Z. H.; Dong X. H.; Zhang Z. B. A versatile synthetic platform for discrete oligo- and polyesters based on optimized protective groups via iterative exponential growth. Macromolecules, 2021, 54(23), 10830-10837. doi:10.1021/acs.macromol.1c01498http://dx.doi.org/10.1021/acs.macromol.1c01498
Huang Z. H.; Shi Q. N.; Guo J.; Meng F. Y.; Zhang Y. J.; Lu Y. T.; Qian Z. F.; Li X. P.; Zhou N. C.; Zhang Z. B.; Zhu X. L. Binary tree-inspired digital dendrimer. Nat. Commun., 2019, 10, 1918. doi:10.1038/s41467-019-09957-6http://dx.doi.org/10.1038/s41467-019-09957-6
Huang Z. H.; Zhao J. F.; Wang Z. M.; Meng F. Y.; Ding K. S.; Pan X. Q.; Zhou N. C.; Li X. P.; Zhang Z. B.; Zhu X. L. Combining orthogonal chain-end deprotections and thiol-maleimide Michael coupling: engineering discrete oligomers by an iterative growth strategy. Angew. Chem. Int. Ed., 2017, 56(44), 13612-13617. doi:10.1002/anie.201706522http://dx.doi.org/10.1002/anie.201706522
Shi Q. N.; Miao T. F.; Lu J. Q.; Hu L. H.; Huang X. M.; Wang Z.; Piao M. H.; Huang Z. H.; Zhang Z. B. Cascaded encryption/decryption using digital polymer toward high-level information security. Giant, 2023, 15, 100172. doi:10.1016/j.giant.2023.100172http://dx.doi.org/10.1016/j.giant.2023.100172
Shi Q. N.; Miao T. F.; Liu Y. X.; Hu L. H.; Yang H.; Shen H.; Piao M. H.; Huang Z. H.; Zhang Z. B. Fabrication and decryption of a microarray of digital dithiosuccinimide oligomers. Macromol. Rapid Commun., 2022, 43(9), 2200029. doi:10.1002/marc.202200029http://dx.doi.org/10.1002/marc.202200029
Chen Y. D.; Huang Z. H.; Zhang Z. B. Recent advances in the synthesis of discrete oligomers and polymers: chemistry, strategy and technology. Sci. China Chem., 2022, 65(6), 1007-1009. doi:10.1007/s11426-022-1223-yhttp://dx.doi.org/10.1007/s11426-022-1223-y
van Genabeek B.; de Waal B. F. M.; Gosens M. M. J.; Pitet L. M.; Palmans A. R. A.; Meijer E. W. Synthesis and self-assembly of discrete dimethylsiloxane-lactic acid diblock co-oligomers: the dononacontamer and its shorter homologues. J. Am. Chem. Soc., 2016, 138(12), 4210-4218. doi:10.1021/jacs.6b00629http://dx.doi.org/10.1021/jacs.6b00629
Sun Y. X.; Tan R.; Ma Z. A.; Gan Z. H.; Li G.; Zhou D. D.; Shao Y.; Zhang W. B.; Zhang R.; Dong X. H. Discrete block copolymers with diverse architectures: resolving complex spherical phases with one monomer resolution. ACS Cent. Sci., 2020, 6(8), 1386-1393. doi:10.1021/acscentsci.0c00798http://dx.doi.org/10.1021/acscentsci.0c00798
Ma Z. A.; Zhou D. D.; Xu M. A.; Gan Z. H.; Zheng T. Y.; Wang S. A.; Tan R.; Dong X. H. Discrete linear-branched block copolymer with broken architectural symmetry. Macromolecules, 2023, 56(3), 833-840. doi:10.1021/acs.macromol.2c02529http://dx.doi.org/10.1021/acs.macromol.2c02529
Gan Z. H.; Zhou D. D.; Ma Z. A.; Xu M. A.; Xu Z. Q.; He J. W.; Zhou J. J.; Dong X. H. Local chain feature mandated self-assembly of block copolymers. J. Am. Chem. Soc., 2023, 145(1), 487-497. doi:10.1021/jacs.2c10761http://dx.doi.org/10.1021/jacs.2c10761
Zhou D. D.; Xu M. A.; Ma Z. A.; Gan Z. H.; Tan R.; Wang S. A.; Zhang Z. B.; Dong X. H. Precisely encoding geometric features into discrete linear polymer chains for robust structural engineering. J. Am. Chem. Soc., 2021, 143(44), 18744-18754. doi:10.1021/jacs.1c09575http://dx.doi.org/10.1021/jacs.1c09575
Mabry J.; Vij A.; Iacono S.; Viers B. Fluorinated polyhedral oligomeric silsesquioxanes (F-POSS). Angew. Chem. Int. Ed., 2008, 47(22), 4137-4140. doi:10.1002/anie.200705355http://dx.doi.org/10.1002/anie.200705355
0
浏览量
207
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构