浏览全部资源
扫码关注微信
大连海事大学船舶与海洋工程学院 大连 116026
E-mail: zhengting@dlmu.edu.cn
纸质出版日期:2024-02-20,
网络出版日期:2023-10-26,
收稿日期:2023-07-29,
录用日期:2023-09-07
移动端阅览
郑庭, 谷靖萱, 程启昊, 张会臣. 界面水分子扩散对超高分子量聚乙烯摩擦学性能影响的反应分子动力学模拟研究. 高分子学报, 2024, 55(2), 222-234
Zheng, T.; Gu, J. X.; Cheng, Q. H.; Zhang, H. C. Reactive molecular dynamics simulations on the influence of interfacial water diffusion on the tribological properties of ultra-high molecular weight polyethylene. Acta Polymerica Sinica, 2024, 55(2), 222-234
郑庭, 谷靖萱, 程启昊, 张会臣. 界面水分子扩散对超高分子量聚乙烯摩擦学性能影响的反应分子动力学模拟研究. 高分子学报, 2024, 55(2), 222-234 DOI: 10.11777/j.issn1000-3304.2023.23202.
Zheng, T.; Gu, J. X.; Cheng, Q. H.; Zhang, H. C. Reactive molecular dynamics simulations on the influence of interfacial water diffusion on the tribological properties of ultra-high molecular weight polyethylene. Acta Polymerica Sinica, 2024, 55(2), 222-234 DOI: 10.11777/j.issn1000-3304.2023.23202.
采用基于反应力场(ReaxFF)的分子动力学模拟方法,研究了摩擦界面水分子向超高分子量聚乙烯(UHMWPE)基体扩散和渗透的基本过程. 分子模拟结果表明:摩擦过程中,水分子稳定吸附在Fe板表面,并与聚乙烯链形成分子内摩擦,使聚乙烯分子产生剪切变形. 当Fe板表面存在纳尺度外凸结构时,其在UHMWPE表面的耕犁作用更为显著,使摩擦界面的内摩擦力显著增加. 当摩擦速度增加时,摩擦界面原子温度显著升高. 在水润滑条件下,界面水分子逐渐扩散到UHMWPE基体中,引起相邻聚乙烯链之间的原子距离增加,这导致聚乙烯链之间的相互作用强度降低. 此外,摩擦界面处还伴随着水分子中氢氧键断裂,并引起相应原子的电荷跃变. 此时,水氧原子与Fe原子形成Fe―O化合物,且具有与Fe
2
O
3
相似的晶体结构. 水分子扩散进入UHMWPE内时,还引起其周围聚乙烯分子的电荷发生改变,造成UHMWPE表层原子电荷分布不均匀.
The molecular dynamics simulation method based on the reactive force field (ReaxFF) was applied to investigate the basic process of diffusion of water molecules at the friction interface into ultra-high molecular weight polyethylene (UHMWPE) substrate. The molecular simulation results show that water molecules are stably adsorbed on the surface of the Fe plate during the friction process
and the internal friction between the Fe slab/water molecules and the UHMWPE substrate drives the shear and deformation process of polyethylene chains. Moreover
in the convex model with nano-scale convex ridges
the plowing effect on the UHMWPE becomes more obvious
which significantly increases the internal frictional force. However
if increasing the friction velocity
the atomic temperature at the frictional interface increases significantly. Under water-lubricating conditions
interfacial water molecules gradually diffuse into the UHMWPE substrate
which in turn increases the average atomic distance between adjacent polyethylene chains. As a result
interaction strength between polyethylene chains decreased. In addition
the rupture of the hydrogen-oxygen bonds in water molecules occurs during the frictional process
which also results in charge transfer at the frictional interface. Meanwhile
the water oxygen atoms after water dissociation and surface Fe atoms formed Fe-O compounds
which have a similar crystal structure to Fe
2
O
3
. The diffusion of water molecules into the UHMWPE substrate also causes rapid changes in the atomic charges of surrounding polyethylene chains
resulting in uneven distribution of atomic charges on the surface of UHMWPE.
反应分子动力学模拟超高分子量聚乙烯水分子扩散分子键断裂电荷转移
Reactive Force Field molecular dynamics simulationUltra-high molecular weight polyethyleneWater diffusionBond breakageCharge transfer
Bracco P.; Bellare A.; Bistolfi A.; Affatato S. Ultra-high molecular weight polyethylene: influence of the chemical, physical and mechanical properties on the wear behavior. A review. Materials, 2017, 10(7), 791. doi:10.3390/ma10070791http://dx.doi.org/10.3390/ma10070791
艾承冲, 蒋佳, 陈世益. 超高分子量聚乙烯在骨科领域的应用及基础研究进展. 复旦学报(医学版), 2016, 43(6), 717-723. doi:10.3969/j.issn.1672-8467.2016.06.014http://dx.doi.org/10.3969/j.issn.1672-8467.2016.06.014
Khadijah S. M. P.; Liza S.; Shahemi N.; Merican A. M.; Abbas A. A.; Ayob K. A. Surface analysis of retrieved bilateral UHMWPE tibial inserts under varus malalignment condition. Eng. Fail. Anal., 2020, 118, 104850. doi:10.1016/j.engfailanal.2020.104850http://dx.doi.org/10.1016/j.engfailanal.2020.104850
Visco A.; Richaud E.; Scolaro C. Ageing of UHMWPE in presence of simulated synovial fluid. Polym. Degrad. Stab., 2021, 189, 109605. doi:10.1016/j.polymdegradstab.2021.109605http://dx.doi.org/10.1016/j.polymdegradstab.2021.109605
邵一伦, 崔文, 张小刚, 张亚丽, 靳忠民. 金属对聚乙烯型人工髋关节摩擦学性能研究进展. 润滑与密封, 2021, 46(5), 126-136. doi:10.3969/j.issn.0254-0150.2021.05.021http://dx.doi.org/10.3969/j.issn.0254-0150.2021.05.021
Tan M. Y.; Liza S.; Khadijah S. M. P.; Abbas A. A.; Merican A. M.; Ayob K. A.; Zulkifli N. W. M.; Masjuki H. H. Surface analysis of early retrieved polyethylene tibial inserts for both knees in total knee replacement. Eng. Fail. Anal., 2020, 109, 104279. doi:10.1016/j.engfailanal.2019.104279http://dx.doi.org/10.1016/j.engfailanal.2019.104279
Shahemi N.; Liza S.; Abbas A. A.; Merican A. Long-term wear failure analysis of UHMWPE acetabular cup in total hip replacement. J. Mech. Behav. Biomed. Mater., 2018, 87, 1-9. doi:10.1016/j.jmbbm.2018.07.017http://dx.doi.org/10.1016/j.jmbbm.2018.07.017
Plumlee K. G.; Schwartz C. J. Surface layer plastic deformation as a mechanism for UHMWPE wear, and its role in debris size. Wear, 2013, 301(1-2), 257-263. doi:10.1016/j.wear.2012.11.081http://dx.doi.org/10.1016/j.wear.2012.11.081
Plumlee K. G.; Schwartz C. J. Investigation of characteristic rippling topology produced during UHMWPE sliding. Wear, 2019, 426-427, 171-179.
吴敬寒, 董澎, 王子瑞, 王柯, 张琴, 傅强. 提高超高分子量聚乙烯的耐磨性:交联与结晶. 高分子学报, 2023, 54(5), 622-630. doi:10.11777/j.issn1000-3304.2022.22420http://dx.doi.org/10.11777/j.issn1000-3304.2022.22420
Galeski A.; Bartczak Z.; Vozniak A.; Pawlak A.; Walkenhorst R. Morphology and plastic yielding of ultrahigh molecular weight polyethylene. Macromolecules, 2020, 53(14), 6063-6077. doi:10.1021/acs.macromol.9b02154http://dx.doi.org/10.1021/acs.macromol.9b02154
Wang A.; Stark C.; Dumbleton J. H. Role of cyclic plastic deformation in the wear of UHMWPE acetabular cups. J. Biomed. Mater. Res., 1995, 29(5), 619-626. doi:10.1002/jbm.820290509http://dx.doi.org/10.1002/jbm.820290509
黄兰, 于颖, 沈显峰, 李俊伟, 史兵. 两种不同取代结构C60-苯乙烯共聚物薄膜微摩擦性能的研究. 高分子学报, 2001, (4), 523-529. doi:10.3321/j.issn:1000-3304.2001.04.022http://dx.doi.org/10.3321/j.issn:1000-3304.2001.04.022
Awaja F.; Zhang S. N.; Tripathi M.; Nikiforov A.; Pugno N. Cracks, microcracks and fracture in polymer structures: formation, detection, autonomic repair. Prog. Mater. Sci., 2016, 83, 536-573. doi:10.1016/j.pmatsci.2016.07.007http://dx.doi.org/10.1016/j.pmatsci.2016.07.007
Chang T.; Yuan C. Q.; Guo Z. W. Tribological behavior of aged UHMWPE under water-lubricated condition. Tribol. Int., 2019, 133, 1-11. doi:10.1016/j.triboint.2018.12.038http://dx.doi.org/10.1016/j.triboint.2018.12.038
Chang T.; Guo Z. W.; Yuan C. Q. Study on influence of Koch snowflake surface texture on tribological performance for marine water-lubricated bearings. Tribol. Int., 2019, 129, 29-37. doi:10.1016/j.triboint.2018.08.015http://dx.doi.org/10.1016/j.triboint.2018.08.015
Bin Ali A.; Samad M. A.; Merah N. UHMWPE hybrid nanocomposites for improved tribological performance under dry and water-lubricated sliding conditions. Tribol. Lett., 2017, 65(3), 102. doi:10.1007/s11249-017-0884-yhttp://dx.doi.org/10.1007/s11249-017-0884-y
Wang J. Z.; Chen B. B.; Liu N.; Han G. F.; Yan F. Y. Combined effects of fiber/matrix interface and water absorption on the tribological behaviors of water-lubricated polytetrafluoroethylene-based composites reinforced with carbon and basalt fibers. Compos. A, 2014, 59, 85-92. doi:10.1016/j.compositesa.2014.01.004http://dx.doi.org/10.1016/j.compositesa.2014.01.004
Kang X. Q.; Yao C.; Yang C. M.; Feng P. Z. Influence of five-year degradation on mechanical and tribology properties of ultra-high-molecular-weight polyethylene. Tribol. Trans., 2018, 61(3), 539-546. doi:10.1080/10402004.2017.1367056http://dx.doi.org/10.1080/10402004.2017.1367056
Ge S. R.; Kang X. Q.; Zhao Y. J. One-year biodegradation study of UHMWPE as artificial joint materials: variation of chemical structure and effect on friction and wear behavior. Wear, 2011, 271(9-10), 2354-2363. doi:10.1016/j.wear.2010.11.048http://dx.doi.org/10.1016/j.wear.2010.11.048
Yao J. Q.; Laurent M. P.; Gilbertson L. N.; Crowninshield R. D. The effect of minimum load on the fluid uptake and wear of highly crosslinked UHMWPE total hip acetabular components. Wear, 2001, 250(1-12), 140-144. doi:10.1016/s0043-1648(01)00655-xhttp://dx.doi.org/10.1016/s0043-1648(01)00655-x
Dai L.; Minn M.; Satyanarayana N.; Sinha S. K.; Tan V. B. C. Identifying the mechanisms of polymer friction through molecular dynamics simulation. Langmuir, 2011, 27(24), 14861-14867. doi:10.1021/la202763rhttp://dx.doi.org/10.1021/la202763r
Solar M.; Meyer H.; Gauthier C. Analysis of local properties during a scratch test on a polymeric surface using molecular dynamics simulations. Eur. Phys. J. E, 2013, 36(3), 29. doi:10.1140/epje/i2013-13029-8http://dx.doi.org/10.1140/epje/i2013-13029-8
Wen J. L.; Ma T. B.; Zhang W. W.; van Duin A. C. T.; Lu X. C. Atomistic mechanisms of Si chemical mechanical polishing in aqueous H2O2: ReaxFF reactive molecular dynamics simulations. Comput. Mater. Sci., 2017, 131, 230-238. doi:10.1016/j.commatsci.2017.02.005http://dx.doi.org/10.1016/j.commatsci.2017.02.005
Kurtz S. M.; Muratoglu O. K.; Evans M.; Edidin A. A. Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials, 1999, 20(18), 1659-1688. doi:10.1016/s0142-9612(99)00053-8http://dx.doi.org/10.1016/s0142-9612(99)00053-8
Maru M. M.; Almeida C. M.; Silva R. F.; Achete C. A. Assessment of boundary lubrication in biodiesels by nanotribological tests. Energy, 2013, 55, 273-277. doi:10.1016/j.energy.2013.03.036http://dx.doi.org/10.1016/j.energy.2013.03.036
Savio D.; Fillot N.; Vergne P. A molecular dynamics study of the transition from ultra-thin film lubrication toward local film breakdown. Tribol. Lett., 2013, 50(2), 207-220. doi:10.1007/s11249-013-0113-2http://dx.doi.org/10.1007/s11249-013-0113-2
Pudjoprawoto R.; Dougherty P.; Fred Higgs C. A volumetric fractional coverage model to predict frictional behavior for in situ transfer film lubrication. Wear, 2013, 304(1-2), 173-182. doi:10.1016/j.wear.2013.04.029http://dx.doi.org/10.1016/j.wear.2013.04.029
Kurdi A.; Wang H. J.; Chang L. Effect of nano-sized TiO2 addition on tribological behaviour of poly ether ether ketone composite. Tribol. Int., 2018, 117, 225-235. doi:10.1016/j.triboint.2017.09.002http://dx.doi.org/10.1016/j.triboint.2017.09.002
Zheng T.; Wu C. Y.; Chen M. J.; Zhang Y.; Cummings P. T. A DFT study of water adsorption on rutile TiO2 (110) surface: the effects of surface steps. J. Chem. Phys., 2016, 145(4), 044702. doi:10.1063/1.4958969http://dx.doi.org/10.1063/1.4958969
van Duin A. C. T.; Dasgupta S.; Lorant F.; Goddard W. A. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A, 2001, 105(41), 9396-9409. doi:10.1021/jp004368uhttp://dx.doi.org/10.1021/jp004368u
Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys., 1995, 117(1), 1-19. doi:10.1006/jcph.1995.1039http://dx.doi.org/10.1006/jcph.1995.1039
Thompson A. P.; Aktulga H. M.; Berger R.; Bolintineanu D. S.; Brown W. M.; Crozier P. S.; Veld P. J.; Kohlmeyer A.; Moore S. G.; Nguyen T. D.; Shan R.; Stevens M. J.; Tranchida J.; Trott C.; Plimpton S. J. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun., 2022, 271, 108171. doi:10.1016/j.cpc.2021.108171http://dx.doi.org/10.1016/j.cpc.2021.108171
Rappe A. K.; Goddard, W. A. III. Charge equilibration for molecular dynamics simulations. J. Phys. Chem., 1991, 95(8), 3358-3363. doi:10.1021/j100161a070http://dx.doi.org/10.1021/j100161a070
Demiralp E.; Çağin T.; Goddard W. A. Morse stretch potential charge equilibrium force field for ceramics: application to the quartz-stishovite phase transition and to silica glass. Phys. Rev. Lett., 1999, 82(8), 1708-1711. doi:10.1103/physrevlett.82.1708http://dx.doi.org/10.1103/physrevlett.82.1708
Dann J. R. Forces involved in the adhesive process. J. Colloid Interface Sci., 1970, 32(2), 302-320. doi:10.1016/0021-9797(70)90054-8http://dx.doi.org/10.1016/0021-9797(70)90054-8
Lo J. M. H.; Ziegler T. Density functional theory and kinetic studies of methanation on iron surface. J. Phys. Chem. C, 2007, 111(29), 11012-11025. doi:10.1021/jp0722206http://dx.doi.org/10.1021/jp0722206
Jung S. C.; Kang M. H. Adsorption of a water molecule on Fe(100): density-functional calculations. Phys. Rev. B, 2010, 81(11), 115460. doi:10.1103/physrevb.81.115460http://dx.doi.org/10.1103/physrevb.81.115460
Liu S. L.; Tian X. X.; Wang T.; Wen X. D.; Li Y. W.; Wang J. G.; Jiao H. J. High coverage water aggregation and dissociation on Fe(100): a computational analysis. J. Phys. Chem. C, 2014, 118(45), 26139-26154. doi:10.1021/jp5081675http://dx.doi.org/10.1021/jp5081675
White J. J.; Hinsch J. J.; Bennett W. W.; Wang Y. Theoretical understanding of water adsorption on stepped iron surfaces. Appl. Surf. Sci., 2022, 605, 154650. doi:10.1016/j.apsusc.2022.154650http://dx.doi.org/10.1016/j.apsusc.2022.154650
Chew K. H.; Kuwahara R.; Ohno K. First-principles study on the atomistic corrosion processes of iron. Phys. Chem. Chem. Phys., 2018, 20(3), 1653-1663. doi:10.1039/c7cp04022ahttp://dx.doi.org/10.1039/c7cp04022a
Yao J. Q.; Blanchet T. A.; Murphy D. J.; Laurent M. P. Effect of fluid absorption on the wear resistance of UHMWPE orthopedic bearing surfaces. Wear, 2003, 255(7-12), 1113-1120. doi:10.1016/s0043-1648(03)00167-4http://dx.doi.org/10.1016/s0043-1648(03)00167-4
Boubakri A.; Haddar N.; Elleuch K.; Bienvenu Y. Impact of aging conditions on mechanical properties of thermoplastic polyurethane. Mater. Des., 2010, 31(9), 4194-4201. doi:10.1016/j.matdes.2010.04.023http://dx.doi.org/10.1016/j.matdes.2010.04.023
0
浏览量
195
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构