浏览全部资源
扫码关注微信
苏州大学材料与化学化工学部 新型功能高分子材料国家地方联合工程实验室 江苏省先进功能高分子材料设计及应用重点实验室 苏州市大分子设计与精密合成重点实验室 苏州 215123
E-mail: guomingyu@suda.edu.cn
纸质出版日期:2024-03-20,
网络出版日期:2023-11-17,
收稿日期:2023-07-30,
录用日期:2023-09-13
移动端阅览
施超男, 郭明雨. 面向栓塞治疗的单分散高弹性可载药水凝胶微球的微流控制备及其性能研究. 高分子学报, 2024, 55(3), 328-337
Shi, C. N.; Guo, M. Y. Studies on the microfluidic preparation and properties of monodisperse, highly elastic drug-loading hydrogel microspheres toward embolization therapy. Acta Polymerica Sinica, 2024, 55(3), 328-337
施超男, 郭明雨. 面向栓塞治疗的单分散高弹性可载药水凝胶微球的微流控制备及其性能研究. 高分子学报, 2024, 55(3), 328-337 DOI: 10.11777/j.issn1000-3304.2023.23203.
Shi, C. N.; Guo, M. Y. Studies on the microfluidic preparation and properties of monodisperse, highly elastic drug-loading hydrogel microspheres toward embolization therapy. Acta Polymerica Sinica, 2024, 55(3), 328-337 DOI: 10.11777/j.issn1000-3304.2023.23203.
面向栓塞治疗,利用单乳液毛细管微流控装置制备了粒径均一、尺寸可调节的载药弹性水凝胶微球. 以丙烯酰胺(AM)和3-磺酸丙基甲基丙烯酸钾盐(SPMA)为单体,与光引发剂、自制大分子胶束多官能度交联剂(MM2),配制成水溶液作为分散相,以光引发剂、表面活性剂溶于液体石蜡作为连续相,在微流控通道内得到单分散内相液滴,随后通过紫外光照交联聚合,生成具有优异弹性的水凝胶微球. 三维通道内的压缩实验表明,微球被压缩约60%而不破碎,且可快速恢复原貌. 微球能够快速并大量负载阳离子抗癌药物盐酸阿霉素,20 min即可达到载药平衡,且包封率均超过97%,平衡载药量约648 mg/g (干球)、95 mg/g (湿球). 此外,还对不同粒径载药微球在不同介质中的药物释放行为进行了研究探讨. 研究结果为单分散、高弹性和高载药量水凝胶微球的制备,特别是在栓塞微球方面的潜在应用研究奠定了一定的基础.
The aim of this paper is to prepare drug-loaded
highly elastic hydrogel microspheres with monodisperse size distribution and adjustable diameters using a single-emulsion capillary microfluidic device for potential embolization therapy. Aqueous solution of acrylamide (AM) and potassium 3-sulfopropyl methacrylate (SPMA) (monomers)
water soluble photo initiator and homemade macromolecular (MM2) micelle (multifunctional cross-linking agent) was used as the dispersed (inner) phase. Oil soluble photo initiator and surfactants were dissolved in liquid paraffin wax
used as the continuous (outer) phase. Monodisperse inner-phase droplets were obtained in the microfluidic channel
which was then crosslinked and polymerized by ultraviolet irradiation to produce hydrogel microspheres with excellent elasticity. The obtained microsphere could be 3D compressed within a round capillary tube more than 60% without breaking and could immediately recover to its original state. The microsphere could quickly load the cationic anticancer drug doxorubicin hydrochloride with high capacity
and the encapsulation efficiency exceeded 97% within 20 min. The equilibrium drug loading capacity was about 648 mg/g (dry spheres) and 95 mg/g (wet spheres). In addition
the drug release behaviors of drug loaded microspheres with different particle sizes in different media were also studied and discussed. These results provide some new experimental and theoretical supports for the preparation of monodisperse
highly elastic and high drug loading hydrogel microspheres
especially for their potential application of embolic microspheres.
微流控单分散微球弹性水凝胶微球栓塞微球
MicrofluidicsMonodisperse microspheresElastic hydrogel microsphereEmbolization microspheres
Wáng Y. X.; de Baere T.; Idée J. M.; Ballet S. Transcatheter embolization therapy in liver cancer: an update of clinical evidences. Chin. J. Cancer Res., 2015, 27(2), 96-121.
金雪锋, 许颖, 沈晓兰, 陈祥峰, 宗在伟. 载药动脉栓塞微球DC BeadTM研究进展. 药学与临床研究, 2012, 20(4), 319-325. doi:10.3969/j.issn.1673-7806.2012.04.012http://dx.doi.org/10.3969/j.issn.1673-7806.2012.04.012
Burt H. M.; Jackson J. K.; Bains S. K.; Liggins R. T.; Oktaba A. M. C.; Arsenault A. L.; Hunter W. L. Controlled delivery of taxol from microspheres composed of a blend of ethylene-vinyl acetate copolymer and poly(d,l-lactic acid). Cancer Lett., 1995, 88(1), 73-79. doi:10.1016/0304-3835(94)03614-ohttp://dx.doi.org/10.1016/0304-3835(94)03614-o
Kato T.; Nemoto R.; Mori H.; Takahashi M.; Tamakawa Y. Transcatheter arterial chemoembolization of renal cell carcinoma with microencapsulated mitomycin C. J. Urol., 1981, 125(1), 19-24. doi:10.1016/s0022-5347(17)54880-6http://dx.doi.org/10.1016/s0022-5347(17)54880-6
石拯拯, 敖国昆. 带药微球缓释栓塞制剂的研究现状. 中华临床医师杂志, 2012, 6(13), 3675-3678. doi:10.3877/cma.j.issn.1674-0785.2012.13.054http://dx.doi.org/10.3877/cma.j.issn.1674-0785.2012.13.054
Zeng J.; Li L.; Zhang H. S.; Li J. Y.; Liu L. L.; Zhou G. F.; Du Q.; Zheng C. S.; Yang X. L. Radiopaque and uniform alginate microspheres loaded with tantalum nanoparticles for real-time imaging during transcatheter arterial embolization. Theranostics, 2018, 8(17), 4591-4600. doi:10.7150/thno.27379http://dx.doi.org/10.7150/thno.27379
Du Q.; Li L.; Liu Y. M.; Zeng J.; Li J. Y.; Zheng C. S.; Zhou G. F.; Yang X. L. Fabrication of inherently radiopaque BaSO4@BaAlg microspheres by a one-step electrospraying method for embolization. J. Mater. Chem. B, 2018, 6(21), 3522-3530. doi:10.1039/c8tb00542ghttp://dx.doi.org/10.1039/c8tb00542g
Vaidya S.; Tozer K. R.; Chen J. An overview of embolic agents. Semin. Interv. Radiol., 2008, 25(3), 204-215. doi:10.1055/s-0028-1085930http://dx.doi.org/10.1055/s-0028-1085930
Zhu Y. Q.; Zhang H. B.; Zhang Y. R.; Wu H. Y.; Wei L. M.; Zhou G.; Zhang Y. Z.; Deng L. F.; Cheng Y. S.; Li M. H.; Santos H. A.; Cui W. G. Endovascular metal devices for the treatment of cerebrovascular diseases. Adv. Mater., 2019, 31(8), e1805452. doi:10.1002/adma.201970058http://dx.doi.org/10.1002/adma.201970058
Landsman T. L.; Bush R. L.; Glowczwski A.; Horn J.; Jessen S. L.; Ungchusri E.; Diguette K.; Smith H. R.; Hasan S. M.; Nash D.; Clubb F. J.; Maitland D. J. Design and verification of a shape memory polymer peripheral occlusion device. J. Mech. Behav. Biomed. Mater., 2016, 63, 195-206. doi:10.1016/j.jmbbm.2016.06.019http://dx.doi.org/10.1016/j.jmbbm.2016.06.019
Peterson G. I.; Dobrynin A. V.; Becker M. L. Biodegradable shape memory polymers in medicine. Adv. Healthc. Mater., 2017, 6, 1700694. doi:10.1002/adhm.201700694http://dx.doi.org/10.1002/adhm.201700694
Ebara M.; Okabe S.; Kita K.; Sugiura N.; Fukuda H.; Yoshikawa M.; Kondo F.; Saisho H. Percutaneous ethanol injection for small hepatocellular carcinoma: therapeutic efficacy based on 20-year observation. J. Hepatol., 2005, 43(3), 458-464. doi:10.1016/j.jhep.2005.03.033http://dx.doi.org/10.1016/j.jhep.2005.03.033
Mason K. P.; Michna E.; Zurakowski D.; Koka B. V.; Burrows P. E. Serum ethanol levels in children and adults after ethanol embolization or sclerotherapy for vascular anomalies. Radiology, 2000, 217(1), 127-132. doi:10.1148/radiology.217.1.r00se30127http://dx.doi.org/10.1148/radiology.217.1.r00se30127
Kim D.; Lee J. H.; Moon H.; Seo M.; Han H.; Yoo H.; Seo H.; Lee J. G.; Hong S.; Kim P.; Lee H. J.; Chung J. W.; Kim H. Development and evaluation of an ultrasound-triggered microbubble combined transarterial chemoembolization (TACE) formulation on rabbit VX2 liver cancer model. Theranostics, 2021, 11(1), 79-92. doi:10.7150/thno.45348http://dx.doi.org/10.7150/thno.45348
Tamatani S.; Koike T.; Ito Y.; Tanaka R. Embolization of arteriovenous malformation with diluted mixture of NBCA. Interv. Neuroradiol., 2000, 6, 187-190. doi:10.1177/15910199000060s129http://dx.doi.org/10.1177/15910199000060s129
Sheth R. A.; Sabir S.; Krishnamurthy S.; Avery R. K.; Zhang Y. S.; Khademhosseini A.; Oklu R. Endovascular embolization by transcatheter delivery of particles: past, present, and future. J. Funct. Biomater., 2017, 8(2), 12. doi:10.3390/jfb8020012http://dx.doi.org/10.3390/jfb8020012
Kunstlinger F.; Brunelle F.; Chaumont P.; Doyon D. Vascular occlusive agents. Am. J. Roentgenol., 1981, 136(1), 151-156. doi:10.2214/ajr.136.1.151http://dx.doi.org/10.2214/ajr.136.1.151
Tadavarthy S. M.; Moller J. H.; Amplatz K. Polyvinyl alcohol (Ivalon): a new embolic material. Am. J. Roentgenol. Radium Ther. Nucl. Med., 1975, 125(3), 609-616. doi:10.2214/ajr.125.3.609http://dx.doi.org/10.2214/ajr.125.3.609
Speakman T. J. Internal occlusion of a carotid-cavernous fistula. J. Neurosurg., 1964, 21(4), 303-305. doi:10.3171/jns.1964.21.4.0303http://dx.doi.org/10.3171/jns.1964.21.4.0303
Lazzaro M. A.; Badruddin A.; Zaidat O. O.; Darkhabani Z.; Pandya D. J.; Lynch J. R. Endovascular embolization of head and neck tumors. Front. Neurol., 2011, 2, 64. doi:10.3389/fneur.2011.00064http://dx.doi.org/10.3389/fneur.2011.00064
Katsumori T.; Nakajima K.; Mihara T.; Tokuhiro M. Uterine artery embolization using gelatin sponge particles alone for symptomatic uterine fibroids. Am. J. Roentgenol., 2002, 178(1), 135-139. doi:10.2214/ajr.178.1.1780135http://dx.doi.org/10.2214/ajr.178.1.1780135
Katsumori T.; Kasahara T.; Akazawa K. Long-term outcomes of uterine artery embolization using gelatin sponge particles alone for symptomatic fibroids. Am. J. Roentgenol., 2006, 186(3), 848-854. doi:10.2214/ajr.05.0640http://dx.doi.org/10.2214/ajr.05.0640
Bannerman D.; Wan W. Multifunctional microbeads for drug delivery in TACE. Expert Opin. Drug Deliv., 2016, 13(9), 1289-1300. doi:10.1080/17425247.2016.1192122http://dx.doi.org/10.1080/17425247.2016.1192122
Alvarez M. M.; Aizenberg J.; Analoui M.; Andrews A. M.; Bisker G.; Boyden E. S.; Kamm R. D.; Karp J. M.; Mooney D. J.; Oklu R.; Peer D.; Stolzoff M.; Strano M. S.; Trujillo-de Santiago G.; Webster T. J.; Weiss P. S.; Khademhosseini A. Emerging trends in micro- and nanoscale technologies in medicine: from basic discoveries to translation. ACS Nano, 2017, 11(6), 5195-5214. doi:10.1021/acsnano.7b01493http://dx.doi.org/10.1021/acsnano.7b01493
Lewis A. L.; Gonzalez M. V.; Lloyd A. W.; Hall B.; Tang Y. Q.; Willis S. L.; Leppard S. W.; Wolfenden L. C.; Palmer R. R.; Stratford P. W. DC bead: in vitro characterization of a drug-delivery device for transarterial chemoembolization. J. Vasc. Interv. Radiol., 2006, 17(2), 335-342. doi:10.1097/01.rvi.0000195323.46152.b3http://dx.doi.org/10.1097/01.rvi.0000195323.46152.b3
Zhang S. S.; Huang C.; Li Z. Z.; Yang Y. J.; Bao T. T.; Chen H. B.; Zou Y. H.; Song L. Comparison of pharmacokinetics and drug release in tissues after transarterial chemoembolization with doxorubicin using diverse lipiodol emulsions and CalliSpheres beads in rabbit livers. Drug Deliv., 2017, 24(1), 1011-1017. doi:10.1080/10717544.2017.1344336http://dx.doi.org/10.1080/10717544.2017.1344336
Biondi M.; Fusco S.; Lewis A. L.; Netti P. A. New insights into the mechanisms of the interactions between doxorubicin and the ion-exchange hydrogel DC bead™ for use in transarterial chemoembolization (TACE). J. Biomater. Sci. Polym. Ed., 2012, 23(1-4), 333-354. doi:10.1163/092050610x551934http://dx.doi.org/10.1163/092050610x551934
缪世锋, 余金鹏, 关怡新, 姚善泾. T型微通道装置制备单分散PLGA微球. 高分子学报, 2012, (2), 154-159. doi:10.3724/SP.J.1105.2012.11091http://dx.doi.org/10.3724/SP.J.1105.2012.11091
Anna S. L.; Bontoux N.; Stone H. A. Formation of dispersions using "flow focusing" in microchannels. Appl. Phys. Lett., 2003, 82(3), 364-366. doi:10.1063/1.1537519http://dx.doi.org/10.1063/1.1537519
Cramer C.; Fischer P.; Windhab E. J. Drop formation in a co-flowing ambient fluid. Chem. Eng. Sci., 2004, 59(15), 3045-3058. doi:10.1016/j.ces.2004.04.006http://dx.doi.org/10.1016/j.ces.2004.04.006
Zhao T. T.; Tan M.; Cui Y. L.; Deng C.; Huang H.; Guo M. Y. Reactive macromolecular micelle crosslinked highly elastic hydrogel with water-triggered shape-memory behaviour. Polym. Chem., 2014, 5(17), 4965-4973. doi:10.1039/c4py00554fhttp://dx.doi.org/10.1039/c4py00554f
Taylor R. R.; Tang Y. Q.; Gonzalez M. V.; Stratford P. W.; Lewis A. L. Irinotecan drug eluting beads for use in chemoembolization: in vitro and in vivo evaluation of drug release properties. Eur. J. Pharm. Sci., 2007, 30(1), 7-14. doi:10.1016/j.ejps.2006.09.002http://dx.doi.org/10.1016/j.ejps.2006.09.002
Du L. R.; Huang Y. G.; Zhang Q.; Zhou Y.; Huang J. W.; Yan L. B.; Yu Z. J.; Qin A. P.; Yang H. N.; Chen M. R.; Liang L.; Bian B. Y.; Li X. F.; Fu J. J. Synthesis and assessment of drug-eluting microspheres for transcatheter arterial chemoembolization. Acta Biomater., 2019, 88, 370-382. doi:10.1016/j.actbio.2019.02.035http://dx.doi.org/10.1016/j.actbio.2019.02.035
Huang H.; Du M. Z.; Chen J. D.; Zhong S. N.; Wang J. H. Preparation and characterization of abalone shells derived biological mesoporous hydroxyapatite microspheres for drug delivery. Mater. Sci. Eng. C, 2020, 113, 110969. doi:10.1016/j.msec.2020.110969http://dx.doi.org/10.1016/j.msec.2020.110969
0
浏览量
323
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构