浏览全部资源
扫码关注微信
1.中国科学院可再生能源重点实验室 广东省新能源和可再生能源研究开发与应用重点实验室 中国科学院广州能源研究所 广州 510640
2.中国科学技术大学 合肥 230026
E-mail: lzzhang@ms.giec.ac.cn
纸质出版日期:2024-03-20,
网络出版日期:2023-12-08,
收稿日期:2023-08-18,
录用日期:2023-10-19
移动端阅览
刘书畅, 吴海莹, 张灵志. 锂内盐两性离子聚合物电解质的制备与电化学性能研究. 高分子学报, 2024, 55(3), 296-308
Liu, S. C.; Wu, H. Y.; Zhang, L. Z. Preparation and electrochemical performance of polyzwitterion containing intramolecular salt as solid electrolytes for lithium-ion batteries. Acta Polymerica Sinica, 2024, 55(3), 296-308
刘书畅, 吴海莹, 张灵志. 锂内盐两性离子聚合物电解质的制备与电化学性能研究. 高分子学报, 2024, 55(3), 296-308 DOI: 10.11777/j.issn1000-3304.2023.23211.
Liu, S. C.; Wu, H. Y.; Zhang, L. Z. Preparation and electrochemical performance of polyzwitterion containing intramolecular salt as solid electrolytes for lithium-ion batteries. Acta Polymerica Sinica, 2024, 55(3), 296-308 DOI: 10.11777/j.issn1000-3304.2023.23211.
与有机电解液相比,聚合物电解质可以有效提高电池的安全性和能量密度,但离子电导率低、电化学窗口较窄和对锂金属不稳定等问题限制了其实际应用. 本文工作通过自由基共聚制备了一种复合锂内盐两性离子聚合物(P(AMPSLi-IL)). 通过静电纺丝技术将不同质量比的P(AMPSLi-IL)和聚乙烯醇(PVA)制备为一系列的纳米纤维膜(PVA-P(AMPSLi-IL)),其热分解温度为280 ℃,其中PVA
9
-P(AMPSLi-IL)
1
的拉伸强度最大为13.8 MPa. 将双氟磺酰亚胺锂(LiFSI)溶于碳酸乙烯酯(EC)中,配制1 mol·L
-1
的溶液作为基础电解液. 纤维膜在基础电解液中,以二缩三丙二醇二丙烯酸酯(TPGDA)作为交联剂原位凝胶化得到电解质膜. 优化后的PVA
9
-P(AMPSLi-IL)
1
基电解质室温离子电导率高达2.87×10
-3
S·cm
-1
,锂离子迁移数高达0.85. 而且该电解质的氧化电位为4.34 V (versus Li/Li
+
),优于基础电解液的3.92 V (versus
Li/Li
+
). 在锂锂对称电池中该电解质能保持超过1800 h的稳定循环,展示了对锂金属极佳的界面稳定性. 将该电解质应用于磷酸铁锂半电池,0.5 C下其初始放电比容量为145.7 mAh·g
-1
,200圈后的容量保持率达79.0%.
Polymer electrolytes are known to be more effective in enhancing the safety and energy density of lithium-ion batteries as compared to organic electrolytes. However
the practical application of polymer electrolytes is hindered due to their low ionic conductivity
narrow electrochemical window
and incompatibility with lithium metal anode. In this work
a polyzwitterion (P(AMPSLi-IL)) containing intramolecular lithium salt of lithium bis(trifluoromethanesulphonyl)imide (LiTFSI) was designed and synthesized through a radical copolymerization of acryloyloxyethyltrimethyl ammonium bis(trifluoromethanesulphonyl)imide (AETATFSI) and lithium 2-acrylamido-2-methylpropanesulfonic acid (AMPSLi). A series of nanofiber membranes composed of poly(vinyl alcohol) (PVA) and P(AMPSLi-IL) were prepared by electrospinning technology. The nanofiber membrane with optimized ratio of PVA to P(AMPSLi-IL) shows a high tensile strength of 13.8 MPa and thermal decomposition temperature of 280 ℃. The nanofiber membranes were
in situ
gelated in a based electrolyte (1 mol/L LiFSI in EC) with tri-(propylene glycol) diacrylate (TPGDA) as a crosslinking agent
which was used as a polymeric solid electrolyte. The optimized electrolyte of PVA
9
-P(AMPSLi-IL)
1
exhibited a high ionic conductivity of 2.87×10
-3
S·cm
-1
at room-temperature
high lithium transference number of 0.85 and oxidation potential of 4.34 V (versus Li/Li
+
). The symmetric Li|Li cell with the PVA
9
-P(AMPSLi-IL)
1
electrolyte shows an excellent cycle stability for over 1800 h
demonstrating a great compatibility between Li anode and the PVA
9
-P(AMPSLi-IL)
1
electrolyte. The LFP|Li half cell with the PVA
9
-P(AMPSLi-IL)
1
electrolyte delivers an initial discharge capacity of 145.7 mAh·g
-1
at 0.5 C with a capacity retention of 79.0% after 200 cycles.
锂金属电池聚合物电解质两性离子聚合物聚乙烯醇
Lithium metal batteryPolymer electrolytePolyzwitterionPoly(vinyl alcohol)
Grey C. P.; Hall D. S. Prospects for lithium-ion batteries and beyond—a 2030 vision. Nat. Commun., 2020, 11, 6279. doi:10.1038/s41467-020-19991-4http://dx.doi.org/10.1038/s41467-020-19991-4
Larcher D.; Tarascon J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem., 2015, 7(1), 19-29. doi:10.1038/nchem.2085http://dx.doi.org/10.1038/nchem.2085
Lin D. C.; Zhao J. E.; Sun J. E.; Yao H. B.; Liu Y. Y.; Yan K.; Cui Y. Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(18), 4613-4618. doi:10.1073/pnas.1619489114http://dx.doi.org/10.1073/pnas.1619489114
Chi S. S.; Liu Y. C.; Song W. L.; Fan L. Z.; Zhang Q. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode. Adv. Funct. Mater., 2017, 27(24), 1700348. doi:10.1002/adfm.201770151http://dx.doi.org/10.1002/adfm.201770151
Armand M.; Tarascon, J. M. Building better batteries. Nature, 2008, 451(7179), 652-657. doi:10.1038/451652ahttp://dx.doi.org/10.1038/451652a
Wang Y. Y.; Zhai F. F.; Zhou Q.; Lv Z. L.; Jian L.; Han P. X.; Zhou X. H.; Cui G. L. Functional applications of polymer electrolytes in high-energy-density lithium batteries. Macromol. Chem. Phys., 2022, 223(8), 2100410. doi:10.1002/macp.202100410http://dx.doi.org/10.1002/macp.202100410
Xi G.; Xiao M.; Wang S. J.; Han D. M.; Li Y. N.; Meng Y. Z. Polymer-based solid electrolytes: material selection, design, and application. Adv. Funct. Mater., 2021, 31(9), 2007598. doi:10.1002/adfm.202007598http://dx.doi.org/10.1002/adfm.202007598
Zhou Q.; Ma J.; Dong S. M.; Li X. F.; Cui G. L. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater., 2019, 31(50), e1902029. doi:10.1002/adma.201902029http://dx.doi.org/10.1002/adma.201902029
Radzir N. N. M.; Abu Hanifah S.; Ahmad A.; Hassan N. H.; Bella F. Effect of lithium bis(trifluoromethylsulfonyl)imide salt-doped UV-cured glycidyl methacrylate. J. Solid State Electrochem., 2015, 19(10), 3079-3085. doi:10.1007/s10008-015-2910-zhttp://dx.doi.org/10.1007/s10008-015-2910-z
Mindemark J.; Sun B.; Törmä E.; Brandell D. High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature. J. Power Sources, 2015, 298, 166-170. doi:10.1016/j.jpowsour.2015.08.035http://dx.doi.org/10.1016/j.jpowsour.2015.08.035
Wang S.; Wang A. L.; Liu X.; Xu H.; Chen J.; Zhang L. Y. Ordered mesogenic units-containing hyperbranched star liquid crystal all-solid-state polymer electrolyte for high-safety lithium-ion batteries. Electrochim. Acta, 2018, 259, 213-224. doi:10.1016/j.electacta.2017.10.163http://dx.doi.org/10.1016/j.electacta.2017.10.163
Mindemark J.; Törmä E.; Sun B.; Brandell D. Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries. Polymer, 2015, 63, 91-98. doi:10.1016/j.polymer.2015.02.052http://dx.doi.org/10.1016/j.polymer.2015.02.052
Zhang H.; Zhou L. X.; Du X. F.; Zhang J. J.; Tian S. W.; Liu T. T.; Zhang J. N.; Hu S. J.; Song W. L.; Zhou X. H.; Cui G. L. Cyanoethyl cellulose-based eutectogel electrolyte enabling high-voltage-tolerant and ion-conductive solid-state lithium metal batteries. Carbon Energy, 2022, 4(6), 1093-1106. doi:10.1002/cey2.227http://dx.doi.org/10.1002/cey2.227
Deng K. R.; Zeng Q. G.; Wang D.; Liu Z.; Qiu Z. P.; Zhang Y. F.; Xiao M.; Meng Y. Z. Single-ion conducting gel polymer electrolytes: Design, preparation and application. J. Mater. Chem. A, 2020, 8(4), 1557-1577. doi:10.1039/c9ta11178fhttp://dx.doi.org/10.1039/c9ta11178f
Li M. T.; Wang L.; Yang B. L.; Du T. T.; Zhang Y. Facile preparation of polymer electrolytes based on the polymerized ionic liquid poly((4-vinylbenzyl)trimethylammonium bis(trifluoromethanesulfonyl imide)) for lithium secondary batteries. Electrochim. Acta, 2014, 123, 296-302. doi:10.1016/j.electacta.2013.12.179http://dx.doi.org/10.1016/j.electacta.2013.12.179
Zhang H.; Liu C. Y.; Zheng L. P.; Feng W. F.; Zhou Z. B.; Nie J. Solid polymer electrolyte comprised of lithium salt/ether functionalized ammonium-based polymeric ionic liquid with bis(fluorosulfonyl)imide. Electrochim. Acta, 2015, 159, 93-101. doi:10.1016/j.electacta.2015.01.213http://dx.doi.org/10.1016/j.electacta.2015.01.213
Mecerreyes D. Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog. Polym. Sci., 2011, 36(12), 1629-1648. doi:10.1016/j.progpolymsci.2011.05.007http://dx.doi.org/10.1016/j.progpolymsci.2011.05.007
Blackman L. D.; Gunatillake P. A.; Cass P.; Locock K. E. S. An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chem. Soc. Rev., 2019, 48(3), 757-770. doi:10.1039/c8cs00508ghttp://dx.doi.org/10.1039/c8cs00508g
Byrne N.; Howlett P. C.; MacFarlane D. R.; Forsyth M. The zwitterion effect in ionic liquids: towards practical rechargeable lithium-metal batteries. Adv. Mater., 2005, 17(20), 2497-2501. doi:10.1002/adma.200500595http://dx.doi.org/10.1002/adma.200500595
Taylor M. E.; Clarkson D.; Greenbaum S. G.; Panzer M. J. Examining the impact of polyzwitterion chemistry on lithium ion transport in ionogel electrolytes. ACS Appl. Polym. Mater., 2021, 3(5), 2635-2645. doi:10.1021/acsapm.1c00229http://dx.doi.org/10.1021/acsapm.1c00229
Zygadło-Monikowska E.; Florjańczyk Z.; Wielgus-Barry E.; Hildebrand E. Proton conducting gel polyelectrolytes based on 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) copolymers. J. Power Sources, 2006, 159(1), 392-398. doi:10.1016/j.jpowsour.2006.02.038http://dx.doi.org/10.1016/j.jpowsour.2006.02.038
Cui W. W.; Tang D. Y.; Gong Z. L.; Guo Y. D. Performance enhancement induced by electrospinning of polymer electrolytes based on poly(methyl methacrylate-co-2-acrylamido-2-methylpropanesulfonic acid lithium). J. Mater. Sci., 2012, 47(17), 6276-6285. doi:10.1007/s10853-012-6547-3http://dx.doi.org/10.1007/s10853-012-6547-3
Ding Y.; Shen X.; Zeng J.; Wang X.; Peng L. Q.; Zhang P.; Zhao J. B. Pre-irradiation grafted single lithium-ion conducting polymer electrolyte based on poly(vinylidene fluoride). Solid State Ion., 2018, 323, 16-24. doi:10.1016/j.ssi.2018.05.009http://dx.doi.org/10.1016/j.ssi.2018.05.009
Lu J.; Gu J. F.; Hu O. D.; Fu Y. H.; Ye D. Z.; Zhang X.; Zheng Y.; Hou L. X.; Liu H. Y.; Jiang X. C. Highly tough, freezing-tolerant, healable and thermoplastic starch/poly(vinyl alcohol) organohydrogels for flexible electronic devices. J. Mater. Chem. A, 2021, 9(34), 18406-18420. doi:10.1039/d1ta04336fhttp://dx.doi.org/10.1039/d1ta04336f
Zhu M.; Tan C. Y.; Fang Q.; Gao L. A.; Sui G.; Yang X. P. High performance and biodegradable skeleton material based on soy protein isolate for gel polymer electrolyte. ACS Sustain. Chem. Eng., 2016, 4(9), 4498-4505. doi:10.1021/acssuschemeng.6b01218http://dx.doi.org/10.1021/acssuschemeng.6b01218
Kassenova N.; Kalybekkyzy S.; Kahraman M. V.; Mentbayeva A.; Bakenov Z. Photo and thermal crosslinked poly (vinyl alcohol)-based nanofiber membrane for flexible gel polymer electrolyte. J. Power Sources, 2022, 520, 230896. doi:10.1016/j.jpowsour.2021.230896http://dx.doi.org/10.1016/j.jpowsour.2021.230896
Zhang F. R.; Sun Y. Y.; Wang Z. C.; Fu D. S.; Li J.; Hu J. C.; Xu J. J.; Wu X. D. Highly conductive polymeric ionic liquid electrolytes for ambient-temperature solid-state lithium batteries. ACS Appl. Mater. Interfaces, 2020, 12(21), 23774-23780. doi:10.1021/acsami.9b22945http://dx.doi.org/10.1021/acsami.9b22945
Chen L. Y.; Fu J. F.; Lu Q.; Shi L. Y.; Li M. M.; Dong L. N.; Xu Y. F.; Jia R. R. Cross-linked polymeric ionic liquids ion gel electrolytes by in situ radical polymerization. Chem. Eng. J., 2019, 378, 122245. doi:10.1016/j.cej.2019.122245http://dx.doi.org/10.1016/j.cej.2019.122245
Liang L.; Yuan W. F.; Chen X. H.; Liao H. Y. Flexible, nonflammable, highly conductive and high-safety double cross-linked poly(ionic liquid) as quasi-solid electrolyte for high performance lithium-ion batteries. Chem. Eng. J., 2021, 421, 130000. doi:10.1016/j.cej.2021.130000http://dx.doi.org/10.1016/j.cej.2021.130000
Wang M. Y.; Sachs R. K.; Harry S. A.; Holt E.; Siegler M. A.; Lectka T. Bifurcated hydrogen bonding to fluorine in an all cis-difluoro-hydroxy array. J. Fluor. Chem., 2023, 267, 110104. doi:10.1016/j.jfluchem.2023.110104http://dx.doi.org/10.1016/j.jfluchem.2023.110104
Shen X.; Hua H. M.; Li H.; Li R. Y.; Hu T. X.; Wu D. Z.; Zhang P.; Zhao J. B. Synthesis and molecular dynamic simulation of a novel single ion conducting gel polymer electrolyte for lithium-ion batteries. Polymer, 2020, 201, 122568. doi:10.1016/j.polymer.2020.122568http://dx.doi.org/10.1016/j.polymer.2020.122568
Fu C. Y.; Homann G.; Grissa R.; Rentsch D.; Zhao W. G.; Gouveia T.; Falgayrat A.; Lin R. Y.; Fantini S.; Battaglia C. A polymerized-ionic-liquid-based polymer electrolyte with high oxidative stability for 4 and 5 V class solid-state lithium metal batteries. Adv. Energy Mater., 2022, 12(27), 2200412. doi:10.1002/aenm.202270117http://dx.doi.org/10.1002/aenm.202270117
Ma Y. X.; Wan J. Y.; Yang Y. F.; Ye Y. S.; Xiao X.; Boyle D. T.; Burke W.; Huang Z. J.; Chen H.; Cui Y.; Yu Z. A.; Oyakhire S. T.; Cui Y. Scalable, ultrathin, and high-temperature-resistant solid polymer electrolytes for energy-dense lithium metal batteries. Adv. Energy Mater., 2022, 12(15), 2103720. doi:10.1002/aenm.202103720http://dx.doi.org/10.1002/aenm.202103720
Wu X. Y.; Du Z. J. Study of the corrosion behavior of LiFSI based electrolyte for Li-ion cells. Electrochem. Commun., 2021, 129, 107088. doi:10.1016/j.elecom.2021.107088http://dx.doi.org/10.1016/j.elecom.2021.107088
0
浏览量
383
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构