浏览全部资源
扫码关注微信
东华大学纺织学院 纺织面料技术教育部重点实验室 纺织行业生物医用纺织材料与技术重点实验室 上海市现代纺织前沿科学研究基地 上海 201620
E-mail: jifu.mao@dhu.edu.cn
纸质出版日期:2024-03-20,
网络出版日期:2023-12-06,
收稿日期:2023-08-26,
录用日期:2023-10-10
移动端阅览
李沂蒙, 李雯昕, 刘晓莉, 唐丽琴, 王莎莎, 王富军, 王璐, 毛吉富. 聚吡咯基本征可拉伸导电纤维构建及电热理疗应用. 高分子学报, 2024, 55(3), 309-319
Li, Y. M.; Li, W. X.; Liu, X. L.; Tang, L. Q.; Wang, S. S.; Wang, F. J.; Wang, L.; Mao, J. F. Construction of stretchable conductive fibers based on polypyrrole and their application in electrothermal therapy. Acta Polymerica Sinica, 2024, 55(3), 309-319
李沂蒙, 李雯昕, 刘晓莉, 唐丽琴, 王莎莎, 王富军, 王璐, 毛吉富. 聚吡咯基本征可拉伸导电纤维构建及电热理疗应用. 高分子学报, 2024, 55(3), 309-319 DOI: 10.11777/j.issn1000-3304.2023.23214.
Li, Y. M.; Li, W. X.; Liu, X. L.; Tang, L. Q.; Wang, S. S.; Wang, F. J.; Wang, L.; Mao, J. F. Construction of stretchable conductive fibers based on polypyrrole and their application in electrothermal therapy. Acta Polymerica Sinica, 2024, 55(3), 309-319 DOI: 10.11777/j.issn1000-3304.2023.23214.
为解决现有可拉伸电极存在的制备工艺复杂和本征可拉伸性能差的问题,采用简单的原位聚合方法,通过优化掺杂剂,开发了一种具有本征可拉伸性的聚吡咯基导电纤维. 在导电纤维的制备过程中,磺基水杨酸钠被用作掺杂剂和增塑剂,使得导电纤维展现出出色的初始电导率(6.34 S/cm),并且在100%拉伸应变下仍保持5.37 S/cm的良好导电性能. 此外,基于弹性导电纤维的加热器具有优秀的焦耳热性能. 当施加5 V电压时,其表面温度可达到60 ℃,为热疗提供了可靠的加热效果. 进一步将导电纤维集成到电热手套中,实验发现在手指关节运动过程中,手套表面温度仅下降了4.89%,可实现对运动关节的稳定热疗. 这为雷诺综合征和关节损伤疼痛等疾病的物理治疗提供了便捷有效的实施方案.
To solve the problems of complicated preparation process and poor intrinsic stretchability of existing stretchable electrodes
this study employs a simple
in situ
polymerization method and optimizes the dopant to develop a conducting polypyrrole-based fiber with excellent intrinsic stretchability. Sodium salicylate is utilized as both a dopant and a plasticizer during the fabrication process
resulting in a highly conductive fiber with an initial conductivity of 6.34 S/cm
which remains at 5.37 S/cm even under 100% strain. Furthermore
the elastic conductive fiber-based heater exhibits excellent Joule heating performance. When a 5 V voltage is applied
the surface temperature can reach 60 ℃
providing reliable heating effects for thermotherapy. Moreover
when integrating the conductive fibers into electric heating gloves
experimental results show that the surface temperature of the gloves only decreases by 4.89% during finger joint movements
enabling stable thermotherapy for moving joints. This provides a convenient and effective implementation for the physical treatment of conditions such as Raynaud's syndrome and joint injury pain.
聚吡咯导电纤维本征可拉伸焦耳热热疗
PolypyrroleConductive fiberIntrinsically stretchableJoule heatThermotherapy
Choi S.; Park J.; Hyun W.; Kim J.; Kim J.; Lee Y. B.; Song C.; Hwang H. J.; Kim J. H.; Hyeon T.; Kim D. H. Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano, 2015, 9(6), 6626-6633. doi:10.1021/acsnano.5b02790http://dx.doi.org/10.1021/acsnano.5b02790
Dawit H.; Zhang Q.; Li Y. M.; Islam S. R.; Mao J. F.; Wang L. Design of electro-thermal glove with sensor function for raynaud's phenomenon patients. Materials, 2021, 14(2), 377. doi:10.3390/ma14020377http://dx.doi.org/10.3390/ma14020377
Brosseau L.; Yonge K. A.; Robinson V.; Marchand S.; Judd M.; Wells G.; Tugwell P. Thermotherapy for treatment of osteoarthritis. Cochrane Database Syst. Rev., 2003, (4), CD004522. doi:10.1002/14651858.cd004522http://dx.doi.org/10.1002/14651858.cd004522
Ma Z. L.; Kang S. L.; Ma J. Z.; Shao L. A.; Wei A. J.; Liang C. B.; Gu J. W.; Yang B.; Dong D. D.; Wei L. F.; Ji Z. Y. High-performance and rapid-response electrical heaters based on ultraflexible, heat-resistant, and mechanically strong aramid nanofiber/Ag nanowire nanocomposite papers. ACS Nano, 2019, 13(7), 7578-7590. doi:10.1021/acsnano.9b00434http://dx.doi.org/10.1021/acsnano.9b00434
An B. W.; Gwak E. J.; Kim K.; Kim Y. C.; Jang J.; Kim J. Y.; Park J. U. Stretchable, transparent electrodes as wearable heaters using nanotrough networks of metallic glasses with superior mechanical properties and thermal stability. Nano Lett., 2016, 16(1), 471-478. doi:10.1021/acs.nanolett.5b04134http://dx.doi.org/10.1021/acs.nanolett.5b04134
Wei L. Q.; Wang S. S.; Shan M. Q.; Li Y. M.; Wang Y. L.; Wang F. J.; Wang L.; Mao J. F. Conductive fibers for biomedical applications. Bioact. Mater., 2022, 22, 343-364. doi:10.1016/j.bioactmat.2022.10.014http://dx.doi.org/10.1016/j.bioactmat.2022.10.014
Gao Y. Y.; Yu L. Y.; Li Y. M.; Wei L. Q.; Yin J.; Wang F. J.; Wang L.; Mao J. F. Maple leaf inspired conductive fiber with hierarchical wrinkles for highly stretchable and integratable electronics. ACS Appl. Mater. Interfaces, 2022, 14(43), 49059-49071. doi:10.1021/acsami.2c12746http://dx.doi.org/10.1021/acsami.2c12746
高娅娅, 李沂蒙, 魏乐倩, 杨擎宇, 毛吉富, 王璐. 仿蠕虫状聚吡咯基复合纤维的构建及应变不敏感导电性能研究. 高分子学报, 2022, 53(1), 46-55.
Gao Y. A.; Guo F. Y.; Cao P.; Liu J. C.; Li D. M.; Wu J.; Wang N.; Su Y. W.; Zhao Y. Winding-locked carbon nanotubes/polymer nanofibers helical yarn for ultrastretchable conductor and strain sensor. ACS Nano, 2020, 14(3), 3442-3450. doi:10.1021/acsnano.9b09533http://dx.doi.org/10.1021/acsnano.9b09533
Wu J. P.; Sang M.; Zhang J. Y.; Sun Y. X.; Wang X. Y.; Zhang J. S.; Pang H. M.; Luo T. Z.; Pan S. S.; Xuan S. H.; Gong X. L. Ultra-stretchable spiral hybrid conductive fiber with 500%-strain electric stability and deformation-independent linear temperature response. Small, 2023, 19(19) , 2207454. doi:10.1002/smll.202207454http://dx.doi.org/10.1002/smll.202207454
Jang S.; Kim C.; Park J. J.; Jin M. L.; Kim S. J.; Park O. O.; Kim T. S.; Jung H. T. A high aspect ratio serpentine structure for use as a strain-insensitive, stretchable transparent conductor. Small, 2018, 14(8), 1702818. doi:10.1002/smll.201702818http://dx.doi.org/10.1002/smll.201702818
Zhang B.; Lei J. E.; Qi D. P.; Liu Z. Y.; Wang Y.; Xiao G. W.; Wu J. S.; Zhang W. N.; Huo F. W.; Chen X. D. Stretchable conductive fibers based on a cracking control strategy for wearable electronics. Adv. Funct. Mater., 2018, 28(29), 1801683. doi:10.1002/adfm.201801683http://dx.doi.org/10.1002/adfm.201801683
Zheng L. J.; Zhu M. M.; Wu B. H.; Li Z. L.; Sun S. T.; Wu P. Y. Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing. Sci. Adv., 2021, 7(22), eabg4041. doi:10.1126/sciadv.abg4041http://dx.doi.org/10.1126/sciadv.abg4041
Wang Y.; Zhu C. X.; Pfattner R.; Yan H. P.; Jin L. H.; Chen S. C.; Molina-Lopez F.; Lissel F.; Liu J.; Rabiah N. I.; Chen Z.; Chung J. W.; Linder C.; Toney M. F.; Murmann B.; Bao Z. N. A highly stretchable, transparent, and conductive polymer. Sci. Adv., 2017, 3(3), e1602076. doi:10.1126/sciadv.1602076http://dx.doi.org/10.1126/sciadv.1602076
Kim S. W.; Kwon S. N.; Na S. I. Stretchable and electrically conductive polyurethane-silver/graphene composite fibers prepared by wet-spinning process. Compos. Part B-Eng., 2019, 167, 573-581. doi:10.1016/j.compositesb.2019.03.035http://dx.doi.org/10.1016/j.compositesb.2019.03.035
Li Y. M.; Gao Y. Y.; Lan L. Z.; Zhang Q.; Wei L. Q.; Shan M. Q.; Guo L. M.; Wang F. J.; Mao J. F.; Zhang Z.; Wang L. Ultrastretchable and wearable conductive multifilament enabled by buckled polypyrrole structure in parallel. NPJ Flex. Electron., 2022, 6, 42. doi:10.1038/s41528-022-00176-6http://dx.doi.org/10.1038/s41528-022-00176-6
Li Y. M.; Lan L. Z.; Zhou F. K.; Peng J. M.; Guo L. M.; Wang F. J.; Zhang Z.; Wang L.; Mao J. F. Flexible and easy-handling pristine polypyrrole membranes with bayberry-like vesicle structure for enhanced Cr(VI) removal from aqueous solution. J. Hazard. Mater., 2022, 439, 129598. doi:10.1016/j.jhazmat.2022.129598http://dx.doi.org/10.1016/j.jhazmat.2022.129598
Lipomi D. J.; Lee J. A.; Vosgueritchian M.; Tee B. C. K.; Bolander J. A.; Bao Z. N. Electronic properties of transparent conductive films of PEDOT:PSS on stretchable substrates. Chem. Mater., 2012, 24(2), 373-382. doi:10.1021/cm203216mhttp://dx.doi.org/10.1021/cm203216m
Savagatrup S.; Chan E.; Renteria-Garcia S. M.; Printz A. D.; Zaretski A. V.; O'Connor T. F.; Rodriquez D.; Valle E.; Lipomi D. J. Plasticization of PEDOT:PSS by common additives for mechanically robust organic solar cells and wearable sensors. Adv. Funct. Mater., 2015, 25(3), 427-436. doi:10.1002/adfm.201401758http://dx.doi.org/10.1002/adfm.201401758
Oh J. Y.; Kim S.; Baik H. K.; Jeong U. Conducting polymer dough for deformable electronics. Adv. Mater., 2016, 28(22), 4455-4461. doi:10.1002/adma.201502947http://dx.doi.org/10.1002/adma.201502947
Li Y. M.; Wei L. Q.; Lan L. Z.; Gao Y. Y.; Zhang Q.; Dawit H.; Mao J. F.; Guo L. M.; Shen L.; Wang L. Conductive biomaterials for cardiac repair: a review. Acta Biomater., 2022, 139, 157-178. doi:10.1016/j.actbio.2021.04.018http://dx.doi.org/10.1016/j.actbio.2021.04.018
魏乐倩, 李沂蒙, 蓝丽珍, 毛吉富, 王璐. 导电高分子膜材料制备及其生物医用研究进展. 东华大学学报(自然科学版), 2021, 47(3), 1-11. doi:10.19886/j.cnki.dhdz.2020.0107http://dx.doi.org/10.19886/j.cnki.dhdz.2020.0107
Nautiyal A.; Qiao M. Y.; Cook J. E.; Zhang X. Y.; Huang T. S. High performance polypyrrole coating for corrosion protection and biocidal applications. Appl. Surf. Sci., 2018, 427, 922-930. doi:10.1016/j.apsusc.2017.08.093http://dx.doi.org/10.1016/j.apsusc.2017.08.093
Zhou F. K.; Li Y. M.; Wang S. S.; Wu X. K.; Peng J. M.; Wang F. J.; Wang L.; Mao J. F. Turning waste into valuables: in situ deposition of polypyrrole on the obsolete mask for Cr(VI) removal and desalination. Sep. Purif. Technol., 2023, 306, 122643. doi:10.1016/j.seppur.2022.122643http://dx.doi.org/10.1016/j.seppur.2022.122643
Wang H. H.; Wen H.; Hu B.; Fei G. Q.; Shen Y. D.; Sun L. Y.; Yang D. Facile approach to fabricate waterborne polyaniline nanocomposites with environmental benignity and high physical properties. Sci. Rep., 2017, 7, 43694. doi:10.1038/srep43694http://dx.doi.org/10.1038/srep43694
郭丽媛. pH响应型聚吡咯纳米管用于自修复防腐涂层研究. 陕西科技大学博士论文, 2022.
Sun F. Q.; Tian M. W.; Sun X. T.; Xu T. L.; Liu X. Q.; Zhu S. F.; Zhang X. J.; Qu L. J. Stretchable conductive fibers of ultrahigh tensile strain and stable conductance enabled by a worm-shaped graphene microlayer. Nano Lett., 2019, 19(9), 6592-6599. doi:10.1021/acs.nanolett.9b02862http://dx.doi.org/10.1021/acs.nanolett.9b02862
He H.; Zhang L.; Guan X.; Cheng H. L.; Liu X. X.; Yu S. Z.; Wei J.; Ouyang J. Y. Biocompatible conductive polymers with high conductivity and high stretchability. ACS Appl. Mater. Interfaces, 2019, 11(29), 26185-26193. doi:10.1021/acsami.9b07325http://dx.doi.org/10.1021/acsami.9b07325
Lan L. Z.; Li Y. M.; Zhu J. H.; Zhang Q.; Wang S. S.; Zhang Z.; Wang L.; Mao J. F. Highly flexible polypyrrole electrode with acanthosphere-like structures for energy storage and actuator applications. Chem. Eng. J., 2023, 455, 140675. doi:10.1016/j.cej.2022.140675http://dx.doi.org/10.1016/j.cej.2022.140675
Li Y. M.; Shan M. Q.; Peng J. M.; Lan L. Z.; Wei L. Q.; Guo L. M.; Wang F. J.; Zhang Z.; Wang L.; Mao J. F. A highly stretchable and conductive continuous composite filament with buckled polypyrrole coating for stretchy electronic textiles. Appl. Surf. Sci., 2023, 610, 155515. doi:10.1016/j.apsusc.2022.155515http://dx.doi.org/10.1016/j.apsusc.2022.155515
于波, 徐学诚. 聚吡咯结构与导电性能的研究. 华东师范大学学报(自然科学版), 2014, (4), 77-87. doi:10.3969/j.issn.1000-5641.2014.04.010http://dx.doi.org/10.3969/j.issn.1000-5641.2014.04.010
Lamprakopoulos S.; Yfantis D.; Yfantis A.; Schmeisser D.; Anastassopoulou J.; Theophanides T. An FTIR study of the role of H2O and D2O in the aging mechanism of conductive polypyrroles. Synth. Met., 2004, 144(3), 229-234. doi:10.1016/j.synthmet.2004.03.006http://dx.doi.org/10.1016/j.synthmet.2004.03.006
Chen Z. H.; Fang R.; Li W.; Guan J. G. Stretchable transparent conductors: from micro/macromechanics to applications. Adv. Mater., 2019, 31(35), e1900756. doi:10.1002/adma.201900756http://dx.doi.org/10.1002/adma.201900756
0
浏览量
401
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构