浏览全部资源
扫码关注微信
北京大学化学与分子工程学院 北京分子科学国家研究中心 教育部高分子化学与物理重点实验室 北京 100871
[ "王欢,女,1988年生. 2009年于北京师范大学化学学院获得理学学士学位;2015年于美国亚利桑那大学化学与生化系获得理学博士学位;2015~2020年于韩国国家基础科学研究院(IBS)担任博士后、研究员及长聘资深研究员,被评为韩国基础科学研究中心年度研究员. 2021年至今于北京大学化学与分子工程学院担任研究员,获得优秀青年科学基金项目(海外)及中国科协青年人才托举工程资助. 研究方向包括:单分子液相电镜、多模态谱学成像方法开发及非平衡化学反应和生化体系的研究." ]
纸质出版日期:2024-02-20,
网络出版日期:2023-12-06,
收稿日期:2023-08-28,
录用日期:2023-10-20
移动端阅览
张德逸, 李佳烨, 许准, 王欢. 液相电子显微镜解析高分子动态过程. 高分子学报, 2024, 55(2), 235-254
Zhang, D. Y.; Li, J. Y.; Xu, Z.; Wang, H. Liquid-phase electron microscopy imaging of polymer dynamics. Acta Polymerica Sinica, 2024, 55(2), 235-254
张德逸, 李佳烨, 许准, 王欢. 液相电子显微镜解析高分子动态过程. 高分子学报, 2024, 55(2), 235-254 DOI: 10.11777/j.issn1000-3304.2023.23215.
Zhang, D. Y.; Li, J. Y.; Xu, Z.; Wang, H. Liquid-phase electron microscopy imaging of polymer dynamics. Acta Polymerica Sinica, 2024, 55(2), 235-254 DOI: 10.11777/j.issn1000-3304.2023.23215.
电子显微镜被广泛用于表征高分子的形态、晶态结构、机械性质及组装行为,其在溶液态高分子的动态过程研究的应用中刚刚起步. 近年来,由于在电镜真空腔中能稳定封存液体样品的纳米技术的发展以及对电子束与样品的作用机制的逐渐清晰,液相电镜实验实现了对溶液态高分子的高时空分辨、原位、实时、时空的“分子录影”. 单分子原位成像实验提供了新的机遇去探索被传统系综测量掩盖的分子动力学行为. 我们总结了液相电镜技术在高分子单链物理性质、单分子反应、组装体与组装行为、相分离等领域的研究进展,阐述了其中实验难点以及核心技术突破,详细讨论了电子束与样品相互作用和单分子成像实验揭示的关于高分子科学的新现象、新问题和新思考. 最后,展望了突破目前纳米级空间分辨率和百毫秒时间分辨率可行的方案、面临的挑战和所需的技术支持,以及该目标实现后将给我们带来新的研究机遇.
The study of conformational changes in polymer chains
their assembly behavior
and the mechanisms behind these phenomena are fundamental problems in polymer science. These factors not only play a crucial role in determining the synthesis
properties and applications of polymer materials
but also have far-reaching implications for the study of biomolecular interactions and biochemical reaction systems. While substantial progress has been made in theoretical and computational methods
observing the dynamic behavior of single polymer chains and their assemblies in a solution state remains as a significant challenge. Liquid-phase transmission electron microscopy (LP-TEM) offers an unprecedented combination of atomic-level spatial resolution and millisecond temporal resolution. This innovative technique provides fresh opportunities to investigate the hidden dynamics of molecules that have traditionally been obscured by ensemble measurements. Electron microscopy has been widely used to analyze the morphology
crystalline structure
mechanical properties
and assembly structures of dry-state polymers. More recently
it has facilitated the study of the dynamic behavior of polymers in solution. The feasibility of LP-TEM experiments is largely owed to advancements in nanotechnologies
enabling the sealing of liquid samples within a chamber to prevent exposure to a vacuum environment. With a good understanding of electron beam-sample interactions and interface-sample interaction
real time imaging of individual macromolecules and their assembly pathways in solution have been successfully achieved despite their fragility. In this review
we first introduce the development of LP-TEM and its experimental setup
then summarize the progresses of LP-TEM experiments on the single chain dynamics of polymers
transient processes of macromolecular interactions
assembly pathways
and phase separations; with an emphasis on the experimental challenges and the corresponding methodological advancements that enabled these experiments. We also discuss the new questions triggered by observations from these experiments and the future directions including the challenges and possible technical assistance
as well as the new research opportunities that this goal will bring.
液相电镜高分子动力学单分子成像图像处理
Liquid phase electron microscopyPolymer dynamicsSingle-molecule imagingImage processing
Gartner T. E.; Jayaraman A. Modeling and simulations of polymers: a roadmap. Macromolecules, 2019, 52, 755-786. doi:10.1021/acs.macromol.8b01836http://dx.doi.org/10.1021/acs.macromol.8b01836
Callaway E. 'The entire protein universe': AI predicts shape of nearly every known protein. Nature, 2022, 608(7921), 15-16. doi:10.1038/d41586-022-02083-2http://dx.doi.org/10.1038/d41586-022-02083-2
Polymenidou M.; Prokop S.; Jung H. H.; Hewer E.; Peretz D.; Moos R.; Tolnay M.; Aguzzi A. Atypical prion protein conformation in familial prion disease with PRNP P105T mutation. Brain Pathol., 2011, 21(2), 209-214. doi:10.1111/j.1750-3639.2010.00439.xhttp://dx.doi.org/10.1111/j.1750-3639.2010.00439.x
Wang H. A.; Li B.; Kim Y. J.; Kwon O. H.; Granick S. Intermediate states of molecular self-assembly from liquid-cell electron microscopy. Proc. Natl. Acad. Sci. U. S. A., 2020, 117(3), 1283-1292. doi:10.1073/pnas.1916065117http://dx.doi.org/10.1073/pnas.1916065117
郑萃, 刘芷君, 梁德海. 光散射技术在高分子表征研究中的应用. 高分子学报, 2022, 53(1), 90-106.
刘双, 曹晓, 张嘉琪, 韩迎春, 赵欣悦, 陈全.流变技术在高分子表征中的应用:如何正确地进行剪切流变测试. 高分子学报, 2021, 52(4), 406-422. doi:10.11777/j.issn1000-3304.2020.20230http://dx.doi.org/10.11777/j.issn1000-3304.2020.20230
袁媛, 王梦梵, 曲云菲, 张泽军, 张建明. 拉曼光谱技术在高分子表征研究中的应用. 高分子学报, 2021, 52(9), 1206-1220. doi:10.11777/j.issn1000-3304.2020.20251http://dx.doi.org/10.11777/j.issn1000-3304.2020.20251
Fukao K.; Nakajima T.; Nonoyama T.; Kurokawa T.; Kawai T.; Gong J. P. Effect of relative strength of two networks on the internal fracture process of double network hydrogels as revealed by in situ small-angle X-ray scattering. Macromolecules, 2020, 53(4), 1154-1163. doi:10.1021/acs.macromol.9b02562http://dx.doi.org/10.1021/acs.macromol.9b02562
Tashiro K.; Kusaka K.; Hosoya T.; Ohhara T.; Hanesaka M.; Yoshizawa Y.; Yamamoto H.; Niimura N.; Tanaka I.; Kurihara K.; Kuroki R.; Tamada T. Structure analysis and derivation of deformed electron density distribution of polydiacetylene giant single crystal by the combination of X-ray and neutron diffraction data. Macromolecules, 2018, 51(11), 3911-3922. doi:10.1021/acs.macromol.8b00650http://dx.doi.org/10.1021/acs.macromol.8b00650
Dorset, D. L. Crystal structure analysis. In: Structural Electron Crystallography. Boston, MA: Springer, 1995. 95-133. doi:10.1007/978-1-4757-6621-9_4http://dx.doi.org/10.1007/978-1-4757-6621-9_4
Kay L. E. New views of functionally dynamic proteins by solution NMR spectroscopy. J. Mol. Biol., 2016, 428(2), 323-331. doi:10.1016/j.jmb.2015.11.028http://dx.doi.org/10.1016/j.jmb.2015.11.028
周超, 杨京法, 赵江. 荧光关联光谱在高分子单链研究中的应用. 高分子学报, 2021, 52(3), 321-334. doi:10.11777/j.issn1000-3304.2020.20238http://dx.doi.org/10.11777/j.issn1000-3304.2020.20238
Kosuri P.; Altheimer B. D.; Dai M. J.; Yin P.; Zhuang X. W. Rotation tracking of genome-processing enzymes using DNA origami rotors. Nature, 2019, 572(7767), 136-140. doi:10.1038/s41586-019-1397-7http://dx.doi.org/10.1038/s41586-019-1397-7
Sabantsev A.; Levendosky R. F.; Zhuang X. W.; Bowman G. D.; Deindl S. Direct observation of coordinated DNA movements on the nucleosome during chromatin remodelling. Nat. Commun., 2019, 10, 1720. doi:10.1038/s41467-019-09657-1http://dx.doi.org/10.1038/s41467-019-09657-1
Soman A.; Wong S. Y.; Korolev N.; Surya W.; Lattmann S.; Vogirala V. K.; Chen Q. M.; Berezhnoy N. V.; van Noort J.; Rhodes D.; Nordenskiöld L. Columnar structure of human telomeric chromatin. Nature, 2022, 609(7929), 1048-1055. doi:10.1038/s41586-022-05236-5http://dx.doi.org/10.1038/s41586-022-05236-5
王冰花, 陈金龙, 张彬. 原子力显微镜在高分子表征中的应用. 高分子学报, 2021, 52(10), 1406-1420. doi:10.11777/j.issn1000-3304.2020.20259http://dx.doi.org/10.11777/j.issn1000-3304.2020.20259
Busch H. Berechnung der bahn von kathodenstrahlen im axialsymmetrischen elektromagnetischen felde. Ann. Der Phys., 1926, 386(25), 974-993. doi:10.1002/andp.19263862507http://dx.doi.org/10.1002/andp.19263862507
Grubb D. T. Radiation damage and electron microscopy of organic polymers. J. Mater. Sci., 1974, 9(10), 1715-1736. doi:10.1007/bf00540772http://dx.doi.org/10.1007/bf00540772
Haider M.; Rose H.; Uhlemann S.; Kabius B.; Urban K. Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. J. Electron Microsc., 1998, 47(5), 395-405. doi:10.1093/oxfordjournals.jmicro.a023610http://dx.doi.org/10.1093/oxfordjournals.jmicro.a023610
McMullan G.; Faruqi A. R.; Clare D.; Henderson R. Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy, 2014, 147, 156-163. doi:10.1016/j.ultramic.2014.08.002http://dx.doi.org/10.1016/j.ultramic.2014.08.002
Marton L. La microscopie electronique des objets biologiques. Acad. R. Belg. Bull. Cl. Sci., 1935, 21, 600-617.
Ruska E. Beitrag zur übermikroskopischen abbildung Bei höheren drucken. Kolloid-Zeitschrift, 1942, 100(2), 212-219. doi:10.1007/bf01519549http://dx.doi.org/10.1007/bf01519549
Gao X. Y.; Zheng L. M.; Yao Y. T.; Peng H. L. Graphene membranes for multi-dimensional electron microscopy imaging: preparation, application, and prospect. Adv. Funct. Mater., 2022, 32(42), 2202502. doi:10.1002/adfm.202202502http://dx.doi.org/10.1002/adfm.202202502
Williamson M. J.; Tromp R. M.; Vereecken P. M.; Hull R.; Ross F. M. Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater., 2003, 2(8), 532-536. doi:10.1038/nmat944http://dx.doi.org/10.1038/nmat944
Liao H. G.; Zheng H. M. Liquid cell transmission electron microscopy. Annu. Rev. Phys. Chem., 2016, 67, 719-747. doi:10.1146/annurev-physchem-040215-112501http://dx.doi.org/10.1146/annurev-physchem-040215-112501
de Jonge N.; Ross F. M. Electron microscopy of specimens in liquid. Nat. Nanotechnol., 2011, 6(11), 695-704. doi:10.1038/nnano.2011.161http://dx.doi.org/10.1038/nnano.2011.161
Yuk J. M.; Park J.; Ercius P.; Kim K.; Hellebusch D. J.; Crommie M. F.; Lee J. Y.; Zettl A.; Alivisatos A. P. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 2012, 336(6077), 61-64. doi:10.1126/science.1217654http://dx.doi.org/10.1126/science.1217654
Lee C.; Huang M.; Luo D.; Jang J. E.; Park C.; Kang S. J.; Ruoff R. S.; Jin S.; Lee H. W. Using single-crystal graphene to form arrays of nanocapsules enabling the observation of light elements in liquid cell transmission electron microscopy. Nano Lett., 2022, 22(18), 7423-7431. doi:10.1021/acs.nanolett.2c02323http://dx.doi.org/10.1021/acs.nanolett.2c02323
Kelly D. J.; Clark N.; Zhou M. W.; Gebauer D.; Gorbachev R. V.; Haigh S. J. In situ TEM imaging of solution-phase chemical reactions using 2D-heterostructure mixing cells. Adv. Mater., 2021, 33(29), e2100668. doi:10.1002/adma.202100668http://dx.doi.org/10.1002/adma.202100668
van Omme J. T.; Wu H. L.; Sun H. Y.; Beker A. F.; Lemang M.; Spruit R. G.; Maddala S. P.; Rakowski A.; Friedrich H.; Patterson J. P.; Garza H. P. Liquid phase transmission electron microscopy with flow and temperature control. J. Mater. Chem. C, 2020, 8(31), 10781-10790. doi:10.1039/d0tc01103ghttp://dx.doi.org/10.1039/d0tc01103g
Kelly D. J.; Zhou M. W.; Clark N.; Hamer M. J.; Lewis E. A.; Rakowski A. M.; Haigh S. J.; Gorbachev R. V. Nanometer resolution elemental mapping in graphene-based TEM liquid cells. Nano Lett., 2018, 18(2), 1168-1174. doi:10.1021/acs.nanolett.7b04713http://dx.doi.org/10.1021/acs.nanolett.7b04713
Rasool H.; Dunn G.; Fathalizadeh A.; Zettl A. Graphene-sealed Si/SiN cavities for high-resolution in situ electron microscopy of nano-confined solutions. Phys. Status Solidi B, 2016, 253(12), 2351-2354. doi:10.1002/pssb.201600232http://dx.doi.org/10.1002/pssb.201600232
Liu Z. W.; Cao Z. T.; He J. A.; Zhang H. R.; Ge Y. J.; Chen B. Versatile printing of substantial liquid cells for efficiently imaging in situ liquid-phase dynamics. Nano Lett., 2021, 21(16), 6882-6890. doi:10.1021/acs.nanolett.1c01901http://dx.doi.org/10.1021/acs.nanolett.1c01901
Koo K.; Park J.; Ji S.; Toleukhanova S.; Yuk J. M. Electron microscopy: liquid-flowing graphene chip-based high-resolution electron microscopy. Adv. Mater., 2021, 33(2), 2005468. doi:10.1002/adma.202170014http://dx.doi.org/10.1002/adma.202170014
Cho H.; Jones M. R.; Nguyen S. C.; Hauwiller M. R.; Zettl A.; Alivisatos A. P. The use of graphene and its derivatives for liquid-phase transmission electron microscopy of radiation-sensitive specimens. Nano Lett., 2017, 17(1), 414-420. doi:10.1021/acs.nanolett.6b04383http://dx.doi.org/10.1021/acs.nanolett.6b04383
Li J. Y.; Zhang D. Y.; Mao S.; Wang H. A. Single molecule imaging with liquid phase electron microscopy. Chin. J. Chem., 2023, 41(6), 679-684. doi:10.1002/cjoc.202200593http://dx.doi.org/10.1002/cjoc.202200593
Chen X.; Li C.; Kong X.; Cao H. L.; Wang H. L.; Zhou X. Q. Direct observation of growth and self-assembly of Pt nanoclusters in water with the aid of a triblock polymer using in situ liquid cell transmission electron microscopy (TEM). Chin. J. Chem., 2017, 35(8), 1278-1283. doi:10.1002/cjoc.201700017http://dx.doi.org/10.1002/cjoc.201700017
Lyu Z. H.; Yao L. H.; Chen W. X.; Kalutantirige F. C.; Chen Q. A. Electron microscopy studies of soft nanomaterials. Chem. Rev., 2023, 123(7), 4051-4145. doi:10.1021/acs.chemrev.2c00461http://dx.doi.org/10.1021/acs.chemrev.2c00461
Touve M. A.; Figg C. A.; Wright D. B.; Park C.; Cantlon J.; Sumerlin B. S.; Gianneschi N. C. Polymerization-induced self-assembly of micelles observed by liquid cell transmission electron microscopy. ACS Cent. Sci., 2018, 4(5), 543-547. doi:10.1021/acscentsci.8b00148http://dx.doi.org/10.1021/acscentsci.8b00148
Parent L. R.; Bakalis E.; Ramírez-Hernández A.; Kammeyer J. K.; Park C.; de Pablo J.; Zerbetto F.; Patterson J. P.; Gianneschi N. C. Directly observing micelle fusion and growth in solution by liquid-cell transmission electron microscopy. J. Am. Chem. Soc., 2017, 139(47), 17140-17151. doi:10.1021/jacs.7b09060http://dx.doi.org/10.1021/jacs.7b09060
Rizvi A.; Mulvey J. T.; Patterson J. P. Observation of liquid-liquid-phase separation and vesicle spreading during supported bilayer formation via liquid-phase transmission electron microscopy. Nano Lett., 2021, 21(24), 10325-10332. doi:10.1021/acs.nanolett.1c03556http://dx.doi.org/10.1021/acs.nanolett.1c03556
Chen Q. A.; Smith J. M.; Park J.; Kim K.; Ho D.; Rasool H. I.; Zettl A.; Alivisatos A. P. 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. Nano Lett., 2013, 13(9), 45564561. doi:10.1021/nl402694nhttp://dx.doi.org/10.1021/nl402694n
Keskin S.; Besztejan S.; Kassier G.; Manz S.; Bücker R.; Riekeberg S.; Trieu H. K.; Rentmeister A.; Dwayne Miller R. J. Visualization of multimerization and self-assembly of DNA-functionalized gold nanoparticles using in-liquid transmission electron microscopy. J. Phys. Chem. Lett., 2015, 6(22), 4487-4492. doi:10.1021/acs.jpclett.5b02075http://dx.doi.org/10.1021/acs.jpclett.5b02075
Yamazaki T.; van Driessche A. E. S.; Kimura Y. High mobility of lattice molecules and defects during the early stage of protein crystallization. Soft Matter, 2020, 16(8), 1955-1960. doi:10.1039/c9sm02382hhttp://dx.doi.org/10.1039/c9sm02382h
Kunitski M.; Eicke N.; Huber P.; Köhler J.; Zeller S.; Voigtsberger J.; Schlott N.; Henrichs K.; Sann H.; Trinter F.; Schmidt L. P. H.; Kalinin A.; Schöffler M. S.; Jahnke T.; Lein M.; Dörner R. Double-slit photoelectron interference in strong-field ionization of the neon dimer. Nat. Commun., 2019, 10(1), 1. doi:10.1038/s41467-018-07882-8http://dx.doi.org/10.1038/s41467-018-07882-8
DiMemmo L. M.; Varano A. C.; Haulenbeek J.; Liang Y. P.; Patel K.; Dukes M. J.; Zheng S. Y.; Hubert M.; Piccoli S. P.; Kelly D. F. Real-time observation of protein aggregates in pharmaceutical formulations using liquid cell electron microscopy. Lab Chip, 2017, 17(2), 315-322. doi:10.1039/c6lc01160hhttp://dx.doi.org/10.1039/c6lc01160h
Le Ferrand H.; Duchamp M.; Gabryelczyk B.; Cai H.; Miserez A. Time-resolved observations of liquid-liquid phase separation at the nanoscale using in situ liquid transmission electron microscopy. J. Am. Chem. Soc., 2019, 141(17), 7202-7210. doi:10.1021/jacs.9b03083http://dx.doi.org/10.1021/jacs.9b03083
Mirsaidov U. M.; Zheng H. M.; Casana Y.; Matsudaira P. Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy. Biophys. J., 2012, 102(4), L15-L17. doi:10.1016/j.bpj.2012.01.009http://dx.doi.org/10.1016/j.bpj.2012.01.009
Keskin S.; de Jonge N. Reduced radiation damage in transmission electron microscopy of proteins in graphene liquid cells. Nano Lett., 2018, 18(12), 7435-7440. doi:10.1021/acs.nanolett.8b02490http://dx.doi.org/10.1021/acs.nanolett.8b02490
Peckys D. B.; Veith G. M.; Joy D. C.; de Jonge N. Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope. PLoS One, 2009, 4(12), e8214. doi:10.1371/journal.pone.0008214http://dx.doi.org/10.1371/journal.pone.0008214
Dukes M. J.; Peckys D. B.; de Jonge N. Correlative fluorescence microscopy and scanning transmission electron microscopy of quantum-dot-labeled proteins in whole cells in liquid. ACS Nano, 2010, 4(7), 4110-4116. doi:10.1021/nn1010232http://dx.doi.org/10.1021/nn1010232
Egerton R. F. Radiation damage to organic and inorganic specimens in the TEM. Micron, 2019, 119, 72-87. doi:10.1016/j.micron.2019.01.005http://dx.doi.org/10.1016/j.micron.2019.01.005
Allen A. O. The Radiation Chemistry of Water and Aqueous Solutions. Princeton, JerseyNew: D. Van Nostrand Company, Inc., 1961. doi:10.1021/ac60180a721http://dx.doi.org/10.1021/ac60180a721
Schneider N. M.; Norton M. M.; Mendel B. J.; Grogan J. M.; Ross F. M.; Bau H. H. Electron-water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C, 2014, 118(38), 22373-22382. doi:10.1021/jp507400nhttp://dx.doi.org/10.1021/jp507400n
Woehl T. J.; Abellan P. Defining the radiation chemistry during liquid cell electron microscopy to enable visualization of nanomaterial growth and degradation dynamics. J. Microsc., 2017, 265(2), 135-147. doi:10.1111/jmi.12508http://dx.doi.org/10.1111/jmi.12508
White E. R.; Mecklenburg M.; Shevitski B.; Singer S. B.; Regan B. C. Charged nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir, 2012, 28(8), 3695-3698. doi:10.1021/la2048486http://dx.doi.org/10.1021/la2048486
Cao M.; Xiong D. B.; Yang L.; Li S. S.; Xie Y. Q.; Guo Q. A.; Li Z. Q.; Adams H.; Gu J. J.; Fan T. X.; Zhang X. H.; Zhang D. Ultrahigh electrical conductivity of graphene embedded in metals. Adv. Funct. Mater., 2019, 29(17) , 1806792. doi:10.1002/adfm.201806792http://dx.doi.org/10.1002/adfm.201806792
Pu S. D.; Gong C.; Robertson A. W. Liquid cell transmission electron microscopy and its applications. R. Soc. Open Sci., 2020, 7(1), 191204. doi:10.1098/rsos.191204http://dx.doi.org/10.1098/rsos.191204
Wang H. A.; Nagamanasa K. H.; Kim Y. J.; Kwon O. H.; Granick S. Longer-lasting electron-based microscopy of single molecules in aqueous medium. ACS Nano, 2018, 12(8), 8572-8578. doi:10.1021/acsnano.8b04190http://dx.doi.org/10.1021/acsnano.8b04190
Korpanty J.; Parent L. R.; Gianneschi N. C. Enhancing and mitigating radiolytic damage to soft matter in aqueous phase liquid-cell transmission electron microscopy in the presence of gold nanoparticle sensitizers or isopropanol scavengers. Nano Lett., 2021, 21(2), 1141-1149. doi:10.1021/acs.nanolett.0c04636http://dx.doi.org/10.1021/acs.nanolett.0c04636
Wu H. L.; Friedrich H.; Patterson J. P.; Sommerdijk N. A. J. M.; de Jonge N. Liquid-phase electron microscopy for soft matter science and biology. Adv. Mater., 2020, 32(25), e2001582. doi:10.1002/adma.202001582http://dx.doi.org/10.1002/adma.202001582
Parent L. R.; Gnanasekaran K.; Korpanty J.; Gianneschi N. C. 100th Anniversary of macromolecular science viewpoint: Polymeric materials by in situ liquid-phase transmission electron microscopy. ACS Macro Lett., 2021, 10(1), 14-38. doi:10.1021/acsmacrolett.0c00595http://dx.doi.org/10.1021/acsmacrolett.0c00595
Gibson W.; Patterson J. P. Liquid phase electron microscopy provides opportunities in polymer synthesis and manufacturing. Macromolecules, 2021, 54(11), 4986-4996. doi:10.1021/acs.macromol.0c02710http://dx.doi.org/10.1021/acs.macromol.0c02710
Cheng B.; Ye E. Z.; Sun H.; Wang H. Deep learning-assisted analysis of single molecule dynamics from liquid-phase electron microscopy. Chem. Commun., 2023, 59(12), 1701-1704. doi:10.1039/d2cc05354chttp://dx.doi.org/10.1039/d2cc05354c
Yao L. H.; Ou Z. H.; Luo B. B.; Xu C.; Chen Q. Machine learning to reveal nanoparticle dynamics from liquid-phase TEM videos. ACS Cent. Sci., 2020, 6(8), 1421-1430. doi:10.1021/acscentsci.0c00430http://dx.doi.org/10.1021/acscentsci.0c00430
Wang B.; Kuo J.; Bae S. C.; Granick S. When Brownian diffusion is not Gaussian. Nat. Mater., 2012, 11(6), 481-485. doi:10.1038/nmat3308http://dx.doi.org/10.1038/nmat3308
An H.; Smith J. W.; Ji B. Q.; Cotty S.; Zhou S.; Yao L. H.; Kalutantirige F. C.; Chen W. X.; Ou Z. H.; Su X. A.; Feng J. E.; Chen Q. A. Mechanism and performance relevance of nanomorphogenesis in polyamide films revealed by quantitative 3D imaging and machine learning. Sci. Adv., 2022, 8(8), eabk1888. doi:10.1126/sciadv.abk1888http://dx.doi.org/10.1126/sciadv.abk1888
Keller A. A note on single crystals in polymers: evidence for a folded chain configuration. Philos. Mag., 1957, 2(21), 1171-1175. doi:10.1080/14786435708242746http://dx.doi.org/10.1080/14786435708242746
Aboulfaraj M.; Ulrich B.; Dahoun A.; G'Sell C. Spherulitic morphology of isotactic polypropylene investigated by scanning electron microscopy. Polymer, 1993, 34(23), 4817-4825. doi:10.1016/0032-3861(93)90003-shttp://dx.doi.org/10.1016/0032-3861(93)90003-s
Alexandre M.; Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng., 2000, 28(1-2), 1-63. doi:10.1016/s0927-796x(00)00012-7http://dx.doi.org/10.1016/s0927-796x(00)00012-7
Wang F. B.; Gnewou O.; Solemanifar A.; Conticello V. P.; Egelman E. H. Cryo-EM of helical polymers. Chem. Rev., 2022, 122(17), 14055-14065. doi:10.1021/acs.chemrev.1c00753http://dx.doi.org/10.1021/acs.chemrev.1c00753
Korpanty J.; Parent L. R.; Hampu N.; Weigand S.; Gianneschi N. C. Thermoresponsive polymer assemblies via variable temperature liquid-phase transmission electron microscopy and small angle X-ray scattering. Nat. Commun., 2021, 12, 6568. doi:10.1038/s41467-021-26773-zhttp://dx.doi.org/10.1038/s41467-021-26773-z
Dearnaley W. J.; Schleupner B.; Varano A. C.; Alden N. A.; Gonzalez F.; Casasanta M. A.; Scharf B. E.; Dukes M. J.; Kelly D. F. Liquid-cell electron tomography of biological systems. Nano Lett., 2019, 19(10), 6734-6741. doi:10.1021/acs.nanolett.9b01309http://dx.doi.org/10.1021/acs.nanolett.9b01309
Mai D. J.; Schroeder C. M. 100th Anniversary of macromolecular science viewpoint: Single-molecule studies of synthetic polymers. ACS Macro Lett., 2020, 9(9), 1332-1341. doi:10.1021/acsmacrolett.0c00523http://dx.doi.org/10.1021/acsmacrolett.0c00523
Nagamanasa K. H.; Wang H. A.; Granick S. Liquid-cell electron microscopy of adsorbed polymers. Adv. Mater., 2017, 29(41), 1703555. doi:10.1002/adma.201703555http://dx.doi.org/10.1002/adma.201703555
Yu C. Q.; Guan J. A.; Chen K. J.; Bae S. C.; Granick S. Single-molecule observation of long jumps in polymer adsorption. ACS Nano, 2013, 7(11), 9735-9742. doi:10.1021/nn4049039http://dx.doi.org/10.1021/nn4049039
Bae Y. N.; Ha M. Y.; Bang K. T.; Yang S.; Kang S. Y.; Kim J.; Sung J.; Kang S.; Kang D.; Lee W. B.; Choi T. L.; Park J. Conformation dynamics of single polymer strands in solution. Adv. Mater., 2022, 34(32), e2202353. doi:10.1002/adma.202202353http://dx.doi.org/10.1002/adma.202202353
Wang H.; Xu Z.; Mao S.; Granick S. Experimental guidelines to image transient single-molecule events using graphene liquid cell electron microscopy. ACS Nano, 2022, 16(11), 18526-18537. doi:10.1021/acsnano.2c06766http://dx.doi.org/10.1021/acsnano.2c06766
Proetto M. T.; Rush A. M.; Chien M. P.; Abellan Baeza P.; Patterson J. P.; Thompson M. P.; Olson N. H.; Moore C. E.; Rheingold A. L.; Andolina C.; Millstone J.; Howell S. B.; Browning N. D.; Evans J. E.; Gianneschi N. C. Dynamics of soft nanomaterials captured by transmission electron microscopy in liquid water. J. Am. Chem. Soc., 2014, 136(4), 1162-1165. doi:10.1021/ja408513mhttp://dx.doi.org/10.1021/ja408513m
Gnanasekaran K.; Korpanty J.; Berger O.; Hampu N.; Halperin-Sternfeld M.; Cohen-Gerassi D.; Adler-Abramovich L.; Gianneschi N. C. Dipeptide nanostructure assembly and dynamics via in situ liquid-phase electron microscopy. ACS Nano, 2021, 15(10), 16542-16551. doi:10.1021/acsnano.1c06130http://dx.doi.org/10.1021/acsnano.1c06130
Scheutz G. M.; Touve M. A.; Carlini A. S.; Garrison J. B.; Gnanasekaran K.; Sumerlin B. S.; Gianneschi N. C. Probing thermoresponsive polymerization-induced self-assembly with variable-temperature liquid-cell transmission electron microscopy. Matter, 2021, 4(2), 722-736. doi:10.1016/j.matt.2020.11.017http://dx.doi.org/10.1016/j.matt.2020.11.017
Xu Z. W.; Li W. H. Control the self-assembly of block copolymers by tailoring the packing frustration. Chin. J. Chem., 2022, (9), 1083-1090. doi:10.1002/cjoc.202100780http://dx.doi.org/10.1002/cjoc.202100780
Li C.; Tho C. C.; Galaktionova D.; Chen X.; Král P.; Mirsaidov U. Dynamics of amphiphilic block copolymers in an aqueous solution: direct imaging of micelle formation and nanoparticle encapsulation. Nanoscale, 2019, 11(5), 2299-2305. doi:10.1039/c8nr08922ahttp://dx.doi.org/10.1039/c8nr08922a
Ianiro A.; Wu H. L.; van Rijt M. M. J.; Vena M. P.; Keizer A. D. A.; Esteves A. C. C.; Tuinier R.; Friedrich H.; Sommerdijk N. A. J. M.; Patterson J. P. Liquid-liquid phase separation during amphiphilic self-assembly. Nat. Chem., 2019, 11(4), 320-328. doi:10.1038/s41557-019-0210-4http://dx.doi.org/10.1038/s41557-019-0210-4
Jabbari V.; Phakatkar A. H.; Amiri A.; Ghorbani A.; Shahbazian-Yassar R. Direct visualization of polymerization-induced self-assembly of amphiphilic copolymers. Macromolecules, 2023, 56(8), 3171-3182. doi:10.1021/acs.macromol.2c02318http://dx.doi.org/10.1021/acs.macromol.2c02318
Piffoux M.; Ahmad N.; Nelayah J.; Wilhelm C.; Silva A.; Gazeau F.; Alloyeau D. Monitoring the dynamics of cell-derived extracellular vesicles at the nanoscale by liquid-cell transmission electron microscopy. Nanoscale, 2018, 10(3), 1234-1244. doi:10.1039/c7nr07576fhttp://dx.doi.org/10.1039/c7nr07576f
Lu J. H.; Xu Z.; Fu H. L.; Lin Y.; Wang H. A.; Lu H. A. Room-temperature grafting from synthesis of protein‒polydisulfide conjugates via aggregation-induced polymerization. J. Am. Chem. Soc., 2022, 144(34), 15709-15717. doi:10.1021/jacs.2c05997http://dx.doi.org/10.1021/jacs.2c05997
Isaacson K. J.; Van Devener B. R.; Steinhauff D. B.; Jensen M. M.; Cappello J.; Ghandehari H. Liquid-cell transmission electron microscopy for imaging of thermosensitive recombinant polymers. J. Control. Release, 2022, 344, 39-49. doi:10.1016/j.jconrel.2022.02.019http://dx.doi.org/10.1016/j.jconrel.2022.02.019
Early J. T.; Yager K. G.; Lodge T. P. Direct observation of micelle fragmentation via in situ liquid-phase transmission electron microscopy. ACS Macro Lett., 2020, 9(5), 756-761. doi:10.1021/acsmacrolett.0c00273http://dx.doi.org/10.1021/acsmacrolett.0c00273
Zhou Y. Y.; Xu Y. C.; Yao Z. F.; Li J. Y.; Pan C. K.; Lu Y.; Yang C. Y.; Ding L.; Xiao B. F.; Wang X. Y.; Shao Y.; Zhang W. B.; Wang J. Y.; Wang H.; Pei J. Visualizing the multi-level assembly structures of conjugated molecular systems with chain-length dependent behavior. Nat. Commun., 2023, 14, 3340. doi:10.1038/s41467-023-39133-whttp://dx.doi.org/10.1038/s41467-023-39133-w
Lim K.; Bae Y. N.; Jeon S.; Kim K.; Kim B. H.; Kim J.; Kang S.; Heo T.; Park J.; Lee W. C. A large-scale array of ordered graphene-sandwiched chambers for quantitative liquid-phase transmission electron microscopy. Adv. Mater., 2020, 32(39), 2002889. doi:10.1002/adma.202002889http://dx.doi.org/10.1002/adma.202002889
Marchello, G.; De Pace, C.; Wilkinson, N.; Ruiz-Perez, L.; Battaglia, G. 4D liquid-phase electron microscopy of ferritin by Brownian single particle analysis. 2019, Doi: 10.48550/arXiv.1907.03348http://dx.doi.org/10.48550/arXiv.1907.03348.
Liu F.; Chu X. K.; Lu H. P.; Wang J. Molecular mechanism of multispecific recognition of Calmodulin through conformational changes. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(20), E3927-E3934. doi:10.1073/pnas.1615949114http://dx.doi.org/10.1073/pnas.1615949114
Wang H. A.; Cheng L.; Sáez A. E.; Pemberton J. E. Flow field penetration in thin nanoporous polymer films under laminar flow by Förster resonance energy transfer coupled with total internal reflectance fluorescence microscopy. Anal. Chem., 2015, 87(23), 11746-11754. doi:10.1021/acs.analchem.5b03751http://dx.doi.org/10.1021/acs.analchem.5b03751
Wang H. A.; Pemberton J. E. Effect of solvent quality on laminar slip flow penetration of poly(N-isopropylacrylamide) films with an exploration of the mass transport mechanism. Langmuir, 2017, 33(30), 7468-7478. doi:10.1021/acs.langmuir.7b01598http://dx.doi.org/10.1021/acs.langmuir.7b01598
Wang H. A.; Pemberton J. E. Direct nanoscopic measurement of laminar slip flow penetration of deformable polymer brush surfaces: synergistic effect of grafting density and solvent quality. Langmuir, 2019, 35(42), 13646-13655. doi:10.1021/acs.langmuir.9b02357http://dx.doi.org/10.1021/acs.langmuir.9b02357
Alberti S.; Hyman A. A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol., 2021, 22(3), 196-213. doi:10.1038/s41580-020-00326-6http://dx.doi.org/10.1038/s41580-020-00326-6
Brangwynne C. P.; Tompa P.; Pappu R. V. Polymer physics of intracellular phase transitions. Nat. Phys., 2015, 11(11), 899-904. doi:10.1038/nphys3532http://dx.doi.org/10.1038/nphys3532
0
浏览量
299
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构