浏览全部资源
扫码关注微信
1.内蒙古大学生命科学学院 呼和浩特 010020
2.中国科学院化学研究所 北京分子科学国家研究中心 北京 100190
[ "高灿,女,1989年生. 2012年毕业于陕西师范大学,获得学士学位. 2015年毕业于中国科学院青海盐湖研究所,获得硕士学位. 2019年毕业于澳大利亚墨尔本大学,获得博士学位. 2020年加入中国科学院化学研究所开展博士后研究工作,2022年留所工作至今,任助理研究员,主要从事有机半导体材料制备、光物理性能及有机发光晶体管器件研究. 在Adv. Mater.、Angew. Chem. Int. Ed.、Sci. Adv. 等期刊发表论文30余篇. 主持国家自然科学基金委青年基金项目." ]
[ "董焕丽,女,1980年生. 2006年毕业于中国科学福建物质结构研究所,获得硕士学位. 2009年毕业于中国科学院化学研究所,获得博士学位. 2009年至今,在中国科学院化学研究所工作,历任助理研究员、副研究员和研究员,一直从事有机高分子光电材料与器件领域研究. 在Nat. Chem.、Sci. Adv.、Adv. Mater. 等期刊发表论文280余篇. 主持中国科学院基础研究青年团队、国家重点研发计划和B类先导专项课题、基金委重点项目等. 2017年获国家自然科学基金委杰出青年科学基金支持,2022年获中国青年科技奖、中国青年女科学家团队奖和中国科学院青年科学家奖,入选英国皇家化学会会士." ]
纸质出版日期:2024-02-20,
网络出版日期:2023-12-20,
收稿日期:2023-09-23,
录用日期:2023-10-06
移动端阅览
胡贝宁, 高灿, 董焕丽. DNA的导电性浅析. 高分子学报, 2024, 55(2), 129-141
Hu, B. N.; Gao, C.; Dong, H. L. A brief analysis of the conductivity of DNA. Acta Polymerica Sinica, 2024, 55(2), 129-141
胡贝宁, 高灿, 董焕丽. DNA的导电性浅析. 高分子学报, 2024, 55(2), 129-141 DOI: 10.11777/j.issn1000-3304.2023.23221.
Hu, B. N.; Gao, C.; Dong, H. L. A brief analysis of the conductivity of DNA. Acta Polymerica Sinica, 2024, 55(2), 129-141 DOI: 10.11777/j.issn1000-3304.2023.23221.
DNA是构成生命基础的最重要分子,DNA是否导电以及怎样导电,关系到我们对生命信号的传递、和对生命和生命现象的深入理解和揭示,以及可编程DNA分子电子学的发展,国际科技界一直高度关注,近二十年来也一直是研究的热点和难点. 然而,DNA是一个复杂的体系,其导电性问题仍然不清楚,备受争议. 本综述中,我们简述了DNA导电性问题的研究历史,分析了DNA导电性问题争议的主要原因,总结了DNA导电性研究中存在的主要问题,其主要归因于测量方法的多样性和DNA分子的复杂性. 最后,对DNA导电性研究的未来发展方向进行了展望,DNA导电性在生命信号传递、生物传感器、分子电子学等领域具有巨大的应用潜力,其研究也将为生物科学和电子学的融合提供新思路.
DNA is the most important molecule for forming the basis of life. Whether and how DNA conducts electricity is highly related to the understanding and revelation of the transmission of life signals and life phenomena
as well as the development of programmable DNA molecular electronics. Thus
this topic has attracted tremendous attention worldwidely. However
DNA is a complex system that its conductivity property is still unclear and controversial. In this review
we briefly summarize the research history of DNA conductivity
analyze the main reasons for the controversy on DNA conductivity. The main problems existing in the study of DNA conductivity are mainly attributed to the diversity of measurement methods and the complexity of the DNA molecule. Finally
we propose the future development direction of DNA conductivity research. DNA conductivity has huge application potential in the fields of life signal transmission
biosensors
molecular electronics
etc
. The research on DNA conductivity will also provide new ideas for the integration of biological science and electronics.
DNA导电性结构与性能关系电输运机理
DNAConductivityStructure-property relationshipElectric transport mechanism
Watson J. D.; Crick F. H. C. Genetical implications of the structure of deoxyribonucleic acid. Nature, 1953, 269, 1967-1969. doi:10.1038/171964b0http://dx.doi.org/10.1038/171964b0
Dong Y. H.; Yao C.; Zhu Y.; Yang L.; Luo D.; Yang D. Y. DNA functional materials assembled from branched DNA: design, synthesis, and applications. Chem. Rev., 2020, 120, 9420-9481. doi:10.1021/acs.chemrev.0c00294http://dx.doi.org/10.1021/acs.chemrev.0c00294
El-Sagheer A. H.; Brown, T. Click chemistry with DNA. Chem. Soc. Rev., 2010, 39, 1388-1405. doi:10.1039/b901971phttp://dx.doi.org/10.1039/b901971p
Hu Q. Q.; Li H.; Wang L. H.; Gu H. Z.; Fan C. H. DNA nanotechnology-enabled drug delivery systems. Chem. Rev., 2019, 119, 6459-6506. doi:10.1021/acs.chemrev.7b00663http://dx.doi.org/10.1021/acs.chemrev.7b00663
Chen H. L.; Fraser Stoddart J. From molecular to supramolecular electronics. Nat. Rev. Mater., 2021, 6, 804-828. doi:10.1038/s41578-021-00302-2http://dx.doi.org/10.1038/s41578-021-00302-2
Lörtscher E. Wiring molecules into circuits. Nat. Nanotechnol., 2013, 8, 381-384. doi:10.1038/nnano.2013.105http://dx.doi.org/10.1038/nnano.2013.105
Eley D. D.; Spivey D. I. Semiconductivity of organic substances. Part 9. Nucleic acid in the dry state. Trans. Faraday Soc., 1962, 58, 411-415. doi:10.1039/tf9625800411http://dx.doi.org/10.1039/tf9625800411
Zhuravel R.; Stern A.; Fardian-Melamed N.; Eidelshtein G.; Katrivas L.; Rotem D.; Kotlyar A. B.; Porath D. Advances in synthesis and measurement of charge transport in DNA-based derivatives. Adv. Mater., 2018, 30, 1706984. doi:10.1002/adma.201706984http://dx.doi.org/10.1002/adma.201706984
Semchenko I. V.; Khakhomov S. A. Application of DNA molecules in nature- inspired technologies: a mini review. Front. Nanotechnol., 2023, 5, 1185429. doi:10.3389/fnano.2023.1185429http://dx.doi.org/10.3389/fnano.2023.1185429
Marrs J.; Lu Q. Y.; Pan V.; Ke Y. G.; Hihath J. Structure-dependent electrical conductance of DNA origami nanowires. ChemBioChem, 2023, 24, e202200454. doi:10.1002/cbic.202200454http://dx.doi.org/10.1002/cbic.202200454
Risser S. M.; Beratan D. N.; Meade T. J. Electron transfer in DNA: predictions of exponential growth and decay of coupling with donor-acceptor distance. J. Am. Chem. Soc., 1993, 115, 2508-2510. doi:10.1021/ja00059a057http://dx.doi.org/10.1021/ja00059a057
Meade T. J.; Kayyem J. F. Electron transfer through DNA: site-specific modification of duplex DNA with ruthenium donors and acceptors. Angew. Chem. Int. Ed., 1995, 34, 352-354. doi:10.1002/anie.199503521http://dx.doi.org/10.1002/anie.199503521
Mislick K. A.; Baldeschwieler J. D.; Kayyem J. F.; Meade T. J. Transfection of folate-polylysine DNA complexes: evidence for lysosomal delivery. Bioconjugate Chem., 1995, 6, 512-515. doi:10.1021/bc00035a002http://dx.doi.org/10.1021/bc00035a002
Holmlin R. E.; Dandliker P. J.; Barton J. K. Charge transfer through the DNA base stack. Angew. Chem. Int. Ed., 1997, 36, 2714-2730. doi:10.1002/anie.199727141http://dx.doi.org/10.1002/anie.199727141
Hall D. B.; Holmlin R. E.; Barton J. K. Oxidative DNA damage through long-range electron transfer. Nature, 1996, 382, 731-735. doi:10.1038/382731a0http://dx.doi.org/10.1038/382731a0
Kelley S. O.; Barton J. K. Electron transfer between bases in double helical DNA. Science, 1999, 283, 375-381. doi:10.1126/science.283.5400.375http://dx.doi.org/10.1126/science.283.5400.375
Sabatani E.; Nikol H. D.; Gray H. B.; Anson F. C. Emission spectroscopy of Ru(bpy)2dppz2+ in nafion. Probing the chemical environment in cast films. J. Am. Chem. Soc., 1996, 118, 1158-1163. doi:10.1021/ja9531790http://dx.doi.org/10.1021/ja9531790
Gray H. B. Biological inorganic chemistry at the beginning of the 21st century. Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 3563-3568. doi:10.1073/pnas.0730378100http://dx.doi.org/10.1073/pnas.0730378100
Gray H. B.; Winkler J. R. Long-range electron transfer. Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 3534-3539. doi:10.1073/pnas.0408029102http://dx.doi.org/10.1073/pnas.0408029102
Shih C. T.; Roche S.; Römer R. A. Point-mutation effects on charge-transport properties of the tumor-suppressor Genep53. Phys. Rev. Lett., 2008, 100, 018105. doi:10.1103/physrevlett.100.018105http://dx.doi.org/10.1103/physrevlett.100.018105
Caetano R. A.; Schulz P. A. Sequencing-independent delocalization in a DNA-like double chain with base pairing. Phys. Rev. Lett., 2005, 95, 126601. doi:10.1103/physrevlett.95.126601http://dx.doi.org/10.1103/physrevlett.95.126601
Wang K. DNA-based single-molecule electronics: from concept to function. J. Funct. Biomater., 2018, 9, 8. doi:10.3390/jfb9010008http://dx.doi.org/10.3390/jfb9010008
Göhler B.; Hamelbeck V.; Markus T. Z.; Kettner M.; Hanne G. F.; Vager Z.; Naaman R.; Zacharias H. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science, 2011, 331, 894-897. doi:10.1126/science.1199339http://dx.doi.org/10.1126/science.1199339
Maiya B. G.; Ramasarma, T. DNA, a molecular wire or not-the debate continues. Curr. Sci., 2001, 80, 1523-1530.
Abdalla S. Electrical conduction through DNA molecule. Prog. Biophys. Mol., 2011, 106, 485-497. doi:10.1016/j.pbiomolbio.2011.03.001http://dx.doi.org/10.1016/j.pbiomolbio.2011.03.001
Giese, B. Electron transfer in DNA. Curr. Opin. Chem. Biol., 2002, 6, 612-618. doi:10.1016/s1367-5931(02)00364-2http://dx.doi.org/10.1016/s1367-5931(02)00364-2
Porath D.; Cuniberti G.; Di Felice R. Charge transport in DNA-based devices. Topics in Current Chemistry. Berlin, Heidelberg: Springer, 2004, 183-228. doi:10.1007/b94477http://dx.doi.org/10.1007/b94477
Triberis G. P.; Dimakogianni M. DNA in the material world: electrical properties and nano-applications. Recent Pat. Nanotechnol., 2009, 3, 135-153. doi:10.2174/187221009788490040http://dx.doi.org/10.2174/187221009788490040
Dunlap D. D.; García R.; Schabtach E.; Bustamante C. Masking generates contiguous segments of metal-coated and bare DNA for scanning tunneling microscope imaging. Proc. Natl. Acad. Sci. U. S. A., 1993, 90, 7652-7655. doi:10.1073/pnas.90.16.7652http://dx.doi.org/10.1073/pnas.90.16.7652
Braun E.; Eichen Y.; Sivan U.; Ben-Yoseph G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature, 1998, 391, 775-778. doi:10.1038/35826http://dx.doi.org/10.1038/35826
de Pablo P. J.; Moreno-Herrero F.; Colchero J.; Gómez Herrero J.; Herrero P.; Baró A. M.; Ordejón P.; Soler J. M.; Artacho E. Absence of dc-conductivity in λ-DNA. Phys. Rev. Lett., 2000, 85, 4992-4995. doi:10.1103/physrevlett.85.4992http://dx.doi.org/10.1103/physrevlett.85.4992
Storm A. J.; van Noort J.; de Vries S.; Dekker C. Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale. Appl. Phys. Lett., 2001, 79, 3881-3883. doi:10.1063/1.1421086http://dx.doi.org/10.1063/1.1421086
Porath D.; Bezryadin A.; de Vries S.; Dekker C. Direct measurement of electrical transport through DNA molecules. Nature, 2000, 403, 635-638. doi:10.1038/35001029http://dx.doi.org/10.1038/35001029
Rakitin A.; Aich P.; Papadopoulos C.; Kobzar Y.; Vedeneev A. S.; Lee J. S.; Xu J. M. Metallic conduction through engineered DNA: DNA nanoelectronic building blocks. Phys. Rev. Lett., 2001, 86, 3670-3673. doi:10.1103/physrevlett.86.3670http://dx.doi.org/10.1103/physrevlett.86.3670
Yoo K. H.; Ha D. H.; Lee J. O.; Park J. W.; Kim J.; Kim J. J.; Lee H. Y.; Kawai T.; Choi H. Y. Electrical conduction through poly(dA)-poly(dT) and poly(dG)-poly(dC) DNA molecules. Phys. Rev. Lett., 2001, 87(19), 198102. doi:10.1103/physrevlett.87.198102http://dx.doi.org/10.1103/physrevlett.87.198102
Fink H. W.; Schönenberger C. Electrical conduction through DNA molecules. Nature, 1999, 398, 407-410. doi:10.1038/18855http://dx.doi.org/10.1038/18855
Tran P.; Alavi B.; Gruner G. Charge transport along the λ-DNA double helix. Phys. Rev. Lett., 2000, 85, 1564-1567. doi:10.1103/physrevlett.85.1564http://dx.doi.org/10.1103/physrevlett.85.1564
Watanabe H.; Manabe C.; Shigematsu T.; Shimotani K.; Shimizu M. Single molecule DNA device measured with triple-probe atomic force microscope. Appl. Phys. Lett., 2001, 79, 2462-2464. doi:10.1063/1.1408604http://dx.doi.org/10.1063/1.1408604
Kasumov A. Y.; Kociak M.; Guéron S.; Reulet B.; Volkov V. T.; Klinov D. V.; Bouchiat H. Proximity-induced superconductivity in DNA. Science, 2001, 291, 280-282. doi:10.1126/science.291.5502.280http://dx.doi.org/10.1126/science.291.5502.280
Wang K.; Hamill J. M.; Wang B.; Guo C. L.; Jiang S. B.; Huang Z.; Xu B. Q. Structure determined charge transport in single DNA molecule break junctions. Chem. Sci., 2014, 5, 3425-3431. doi:10.1039/c4sc00888jhttp://dx.doi.org/10.1039/c4sc00888j
Artés J. M.; Li Y. H.; Qi J. Q.; Anantram M. P.; Hihath J. Conformational gating of DNA conductance. Nat. Commun., 2015, 6, 8870. doi:10.1038/ncomms9870http://dx.doi.org/10.1038/ncomms9870
Zhu W. G.; Sun Y. J.; Liu J.; Bai S. M.; Zhang Z. C.; Shi Q.; Hu W. P.; Fu H. B. Exciton transport in molecular semiconductor crystals for spin-optoelectronics paradigm. Chemistry, 2021, 27, 222-227. doi:10.1002/chem.202003447http://dx.doi.org/10.1002/chem.202003447
Liu S. P.; Weisbrod S.; Tang Z.; Marx A.; Scheer E.; Erbe A. Direct measurement of electrical transport through G-quadruplex DNA with mechanically controllable break junction electrodes. Angew. Chem. Int. Ed., 2010, 49, 3313-3316. doi:10.1002/anie.201000022http://dx.doi.org/10.1002/anie.201000022
Liu S.; Zhang X. Y.; Luo W. X.; Wang Z. X.; Guo X. F.; Steigerwald M. L.; Fang X. H. Single-molecule detection of proteins using aptamer-functionalized molecular electronic devices. Angew. Chem. Int. Ed., 2011, 50(11), 2496-2502. doi:10.1002/anie.201006469http://dx.doi.org/10.1002/anie.201006469
Xu Z.; Li T. Direct conductance measurement of single DNA molecules in aqueous solution. Nano Lett., 2004, 4, 1105-1108. doi:10.1021/nl0494295http://dx.doi.org/10.1021/nl0494295
Li Y. Q.; Xiang L. M.; Palma J. L.; Asai Y.; Tao N. J. Thermoelectric effect and its dependence on molecular length and sequence in single DNA molecules. Nat. Commun., 2016, 7, 11294. doi:10.1038/ncomms11294http://dx.doi.org/10.1038/ncomms11294
Xiang L. M.; Palma J. L.; Bruot C.; Mujica V.; Ratner M. A.; Tao N. J. Intermediate tunnelling-hopping regime in DNA charge transport. Nat. Chem., 2015, 7, 221-226. doi:10.1038/nchem.2183http://dx.doi.org/10.1038/nchem.2183
Giese B.; Amaudrut J.; Köhler A. K.; Spormann M.; Wessely S. Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling. Nature, 2001, 412, 318-320. doi:10.1038/35085542http://dx.doi.org/10.1038/35085542
Mantz Y. A.; Gervasio F. L.; Laino T.; Parrinello M. Solvent effects on charge spatial extent in DNA and implications for transfer. Phys. Rev. Lett., 2007, 99, 058104. doi:10.1103/physrevlett.99.058104http://dx.doi.org/10.1103/physrevlett.99.058104
Endres R. G.; Cox D. L.; Singh R. R. P. Colloquium: the quest for high-conductance DNA. Rev. Mod. Phys., 2004, 76, 195-214. doi:10.1103/revmodphys.76.195http://dx.doi.org/10.1103/revmodphys.76.195
Hihath J.; Xu B. Q.; Zhang P. M.; Tao N. J. Study of single-nucleotide polymorphisms by means of electrical conductance measurements. Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 16979-16983. doi:10.1073/pnas.0505175102http://dx.doi.org/10.1073/pnas.0505175102
Cohen H.; Nogues C.; Naaman R.; Porath D. Direct measurement of electrical transport through single DNA molecules of complex sequence. Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 11589-11593. doi:10.1073/pnas.0505272102http://dx.doi.org/10.1073/pnas.0505272102
Reed M. A.; Zhou C.; Muller C. J.; Burgin T. P.; Tour J. M. Conductance of a molecular junction. Science, 1997, 278, 252-254. doi:10.1126/science.278.5336.252http://dx.doi.org/10.1126/science.278.5336.252
Guo X. F.; Gorodetsky A. A.; Hone J.; Barton J. K.; Nuckolls C. Conductivity of a single DNA duplex bridging a carbon nanotube gap. Nat. Nanotechnol., 2008, 3, 163-167. doi:10.1038/nnano.2008.4http://dx.doi.org/10.1038/nnano.2008.4
Iyer R. R.; Pluciennik A.; Burdett V.; Modrich P. L. DNA mismatch repair: functions and mechanisms. Chem. Rev., 2006, 106, 302-323. doi:10.1021/cr0404794http://dx.doi.org/10.1021/cr0404794
Nogues C.; Cohen S. R.; Daube S.; Apter N.; Naaman R. Sequence dependence of charge transport properties of DNA. J. Phys. Chem. B, 2006, 110, 8910-8913. doi:10.1021/jp060870ohttp://dx.doi.org/10.1021/jp060870o
Villas-Bôas J. M.; Govorov A. O.; Ulloa S. E. Coherent control of tunneling in a quantum dot molecule. Phys. Rev. B, 2004, 69, 125342. doi:10.1103/physrevb.69.125342http://dx.doi.org/10.1103/physrevb.69.125342
Zikic R.; Krstić P. S.; Zhang X. G.; Fuentes-Cabrera M.; Wells J.; Zhao X. C. Characterization of the tunneling conductance across DNA bases. Phys. Rev. E, 2006, 74, 011919. doi:10.1103/physreve.74.011919http://dx.doi.org/10.1103/physreve.74.011919
Zikic R.; Krstić P. S.; Zhang X. G.; Fuentes-Cabrera M.; Wells J.; Zhao X. C. Reply to "comment on 'characterization of the tunneling conductance across DNA bases'". Phys. Rev. E, 2007, 76, 013902. doi:10.1103/physreve.76.013902http://dx.doi.org/10.1103/physreve.76.013902
Yu Z.; Song X. Y. Variable range hopping and electrical conductivity along the DNA double helix. Phys. Rev. Lett., 2001, 86, 6018-6021. doi:10.1103/physrevlett.86.6018http://dx.doi.org/10.1103/physrevlett.86.6018
Kutnjak Z.; Lahajnar G.; Filipič C.; Podgornik R.; Nordenskiöld L.; Korolev N.; Rupprecht A. Electrical conduction in macroscopically oriented deoxyribonucleic and hyaluronic acid samples. Phys. Rev. E, 2005, 71(4), 041901. doi:10.1103/physreve.71.041901http://dx.doi.org/10.1103/physreve.71.041901
Jortner J.; Bixon M.; Voityuk A. A.; Rösch N. Superexchange mediated charge hopping in DNA. J. Phys. Chem. A, 2002, 106(33), 7599-7606. doi:10.1021/jp014232bhttp://dx.doi.org/10.1021/jp014232b
Gutiérrez R.; Mandal S.; Cuniberti G. Dissipative effects in the electronic transport through DNA molecular wires. Phys. Rev. B, 2005, 71(23), 235116. doi:10.1103/physrevb.71.235116http://dx.doi.org/10.1103/physrevb.71.235116
Klotsa D.; Römer R. A.; Turner M. S. Electronic transport in DNA. Biophys. J., 2005, 89(4), 2187-2198. doi:10.1529/biophysj.105.064014http://dx.doi.org/10.1529/biophysj.105.064014
Li Y. H.; Artés J. M.; Demir B.; Gokce S.; Mohammad H. M.; Alangari M.; Anantram M. P.; Oren E. E.; Hihath J. Detection and identification of genetic material via single-molecule conductance. Nat. Nanotechnol., 2018, 13(12), 1167-1173. doi:10.1038/s41565-018-0285-xhttp://dx.doi.org/10.1038/s41565-018-0285-x
Wang X. L.; Gao L.; Liang B.; Li X.; Guo X. F. Revealing the direct effect of individual intercalations on DNA conductance toward single-molecule electrical biodetection. J. Mater. Chem. B, 2015, 3, 5150-5154. doi:10.1039/c5tb00666jhttp://dx.doi.org/10.1039/c5tb00666j
Lin J. F.; Wang S. D.; Zhang F.; Yang B. W.; Du P. W.; Chen C. F.; Zang Y. P.; Zhu D. B. Highly efficient charge transport across carbon nanobelts. Sci. Adv., 2022, 8, eade4692. doi:10.1126/sciadv.ade4692http://dx.doi.org/10.1126/sciadv.ade4692
Lv Y. X.; Lin J. F.; Song K.; Song X. W.; Zang H. J.; Zang Y. P.; Zhu D. B. Single cycloparaphenylene molecule devices: Achieving large conductance modulation via tuning radial π-conjugation. Sci. Adv., 2021, 7, eabk3095. doi:10.1126/sciadv.abk3095http://dx.doi.org/10.1126/sciadv.abk3095
Jia C. C.; Migliore A.; Xin N.; Huang S. Y.; Wang J. Y.; Yang Q.; Wang S. P.; Chen H. L.; Wang D. M.; Feng B. Y.; Liu Z. R.; Zhang G. Y.; Qu D. H.; Tian H.; Ratner M. A.; Xu H. Q.; Nitzan A.; Guo X. F. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science, 2016, 352, 1443-1445. doi:10.1126/science.aaf6298http://dx.doi.org/10.1126/science.aaf6298
Lin J. F.; Lv Y. X.; Song K.; Song X. W.; Zang H. J.; Du P. W.; Zang Y. P.; Zhu D. B. Cleavage of non-polar C(sp2)‒C(sp2) bonds in cycloparaphenylenes via electric field-catalyzed electrophilic aromatic substitution. Nat. Commun., 2023, 14, 293. doi:10.1038/s41467-022-35686-4http://dx.doi.org/10.1038/s41467-022-35686-4
Li P. H.; Chen Y. J.; Wang B. Y.; Li M. M.; Xiang D.; Jia C. C.; Guo X. F. Single-molecule optoelectronic devices: physical mechanism and beyond. Opto Electron. Adv., 2022, 5, 210094. doi:10.29026/oea.2022.210094http://dx.doi.org/10.29026/oea.2022.210094
Tang C.; Stuyver T.; Lu T. G.; Liu J. Y.; Ye Y. L.; Gao T. Y.; Lin L. C.; Zheng J. T.; Liu W. Q.; Shi J.; Shaik S.; Xia H. P.; Hong W. J. Voltage-driven control of single-molecule keto-enol equilibrium in a two-terminal junction system. Nat. Commun., 2023, 14, 3657. doi:10.1038/s41467-023-39198-7http://dx.doi.org/10.1038/s41467-023-39198-7
Jia C. C.; Ma B. J.; Xin N.; Guo X. F. Carbon electrode-molecule junctions: a reliable platform for molecular electronics. Acc. Chem. Res., 2015, 48, 2565-2575. doi:10.1021/acs.accounts.5b00133http://dx.doi.org/10.1021/acs.accounts.5b00133
Xin N.; Guan J. X.; Zhou C. G.; Chen X.; Gu C. H.; Li Y.; Ratner M. A.; Nitzan A.; Stoddart J. F.; Guo X. F. Concepts in the design and engineering of single-molecule electronic devices. Nat. Rev. Phys., 2019, 1, 211-230. doi:10.1038/s42254-019-0022-xhttp://dx.doi.org/10.1038/s42254-019-0022-x
Li R. H.; Zhou Y.; Ge W. H.; Zheng J. T.; Zhu Y. X.; Bai J.; Li X. H.; Lin L. C.; Duan H. C.; Shi J.; Yang Y.; Liu J. Y.; Liu Z. T.; Hong W. J. Strain of supramolecular interactions in single-stacking junctions. Angew. Chem. Int. Ed., 2022, 61, e202200191. doi:10.1002/anie.202200191http://dx.doi.org/10.1002/anie.202200191
Zhao S. Q.; Wu Q. Q.; Pi J. C.; Liu J. Y.; Zheng J. T.; Hou S. J.; Wei J. Y.; Li R. H.; Sadeghi H.; Yang Y.; Shi J. A.; Chen Z. B.; Xiao Z. Y.; Lambert C.; Hong W. J. Cross-plane transport in a single-molecule two-dimensional van der Waals heterojunction. Sci. Adv., 2020, 6, eaba6714. doi:10.1126/sciadv.aba6714http://dx.doi.org/10.1126/sciadv.aba6714
Feng A. N.; Zhou Y.; Al-Shebami M. A. Y.; Chen L. C.; Pan Z. C.; Xu W.; Zhao S. Q.; Zeng B. F.; Xiao Z. Y.; Yang Y.; Hong W. J. σ-σ Stacked supramolecular junctions. Nat. Chem., 2022, 14, 1158-1164. doi:10.1038/s41557-022-01003-1http://dx.doi.org/10.1038/s41557-022-01003-1
0
浏览量
214
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构