浏览全部资源
扫码关注微信
华南理工大学前沿弹性体研究院 广州 510640
E-mail: 2023700058@buct.edu.cn
psbcguo@scut.edu.cn
纸质出版日期:2024-03-20,
网络出版日期:2023-12-11,
收稿日期:2023-09-05,
录用日期:2023-10-26
移动端阅览
魏思奇, 余双舰, 吴思武, 唐征海, 郭宝春, 张立群. 基于功能性橡胶颗粒集成的宽温域橡胶阻尼材料. 高分子学报, 2024, 55(3), 338-348
Wei, S. Q.; Yu, S. J.; Wu, S. W.; Tang, Z. H.; Guo, B. C.; Zhang, L. Q. Manufacturing damping rubber with wide temperature range via integration of functional rubber granules. Acta Polymerica Sinica, 2024, 55(3), 338-348
魏思奇, 余双舰, 吴思武, 唐征海, 郭宝春, 张立群. 基于功能性橡胶颗粒集成的宽温域橡胶阻尼材料. 高分子学报, 2024, 55(3), 338-348 DOI: 10.11777/j.issn1000-3304.2023.23224.
Wei, S. Q.; Yu, S. J.; Wu, S. W.; Tang, Z. H.; Guo, B. C.; Zhang, L. Q. Manufacturing damping rubber with wide temperature range via integration of functional rubber granules. Acta Polymerica Sinica, 2024, 55(3), 338-348 DOI: 10.11777/j.issn1000-3304.2023.23224.
通过在橡胶基体中集成多种功能性橡胶颗粒(FRGs),构筑具有多相网络结构的阻尼橡胶材料. 首先通过扫描电子显微镜(scanning electron microscopy,SEM)和原子力显微镜(atomic force microscopy,AFM)观察所制备集成材料的微观形貌,然后探究了FRGs多种组合对橡胶样品的动态性能的影响. 结果表明,基于FRGs集成的多组分样品呈典型的“海-岛”多相结构,在保持每种FRGs组分相对独立的黏弹特性的同时,通过有效的界面反应实现黏弹特性的集成. 进一步地,通过调控FRGs的网络结构参数和相对含量实现了各组分损耗峰的有序组合,获得一种多相结构的宽温域阻尼橡胶材料,其在吸音降噪方面展现出较好的应用潜力. 此外,该多相阻尼材料还兼具优异的力学性能和吸能减震能力. 本文工作基于传统橡胶工业原料和共混工艺,提出了一种简单易行、可规模化生产的橡胶阻尼材料制备新策略,不涉及复杂合成与改性,为发展高性能橡胶阻尼材料提供了新思路.
Rubber damping materials with multiphase network structure were constructed by integrating and combining functional rubber particles (FRGs) in the rubber matrix. Accordingly
a new strategy for preparing damping rubber material with wide temperature range was proposed. The morphology of the multiphase materials was characterized by scanning electron microscope (SEM) and atomic force microscope (AFM)
proving that the prepared composite materials exhibit a typical "sea-island" structure. Then
the effect of FRGs combination on the viscoelastic properties of multiphase samples was explored
which demonstrated that this strategy of constructing multiphase materials through interfacial co-crosslinking can elaborately integrate the viscoelastic properties of different FRGs components while maintaining their relatively independent viscoelastic properties. By adjusting the network structural parameters and relative content of the FRGs
the combination of loss peaks of each component was achieved
and a wide temperature range damping rubber material was ultimately obtained. Further
sound absorption testing indicates the potential application of this multiphase damping material in sound absorption and noise reduction. In addition
the multiphase damping material also possesses excellent mechanical properties and energy absorption and shock absorption capabilities. In short
this work proposes a simple and scalable preparation strategy for rubber damping materials based on traditional rubber industry raw materials and blending processes
providing new ideas for the development of high-performance rubber damping materials.
功能性橡胶颗粒集成组合多相网络宽温域橡胶阻尼材料
Functional rubber granulesIntegrated combinationMultiphase structureWide temperature rangeDamping rubber
Choudhary N.; Kaur D. Vibration damping materials and their applications in nano/micro-electro-mechanical systems: a review. J. Nanosci. Nanotechnol., 2015, 15(3), 1907-1924. doi:10.1166/jnn.2015.10324http://dx.doi.org/10.1166/jnn.2015.10324
Tubaldi E.; Mitoulis S. A.; Ahmadi H. Comparison of different models for high damping rubber bearings in seismically isolated bridges. Soil Dyn. Earthq. Eng., 2018, 104, 329-345. doi:10.1016/j.soildyn.2017.09.017http://dx.doi.org/10.1016/j.soildyn.2017.09.017
Li X. L.; Mao H. Y.; Xu K.; Miao C. A SHPB experimental study on dynamic mechanical property of high-damping rubber. Shock Vib., 2018, 2018, 1-10. doi:10.1155/2018/3128268http://dx.doi.org/10.1155/2018/3128268
Cu V. H.; Han B.; Pham D. H. Tuned mass-high damping rubber damper on a taut cable. KSCE J. Civ. Eng., 2017, 21(3), 928-936. doi:10.1007/s12205-016-0857-yhttp://dx.doi.org/10.1007/s12205-016-0857-y
Zhang C. H.; Hu Z.; Gao G.; Zhao S.; Huang Y. D. Damping behavior and acoustic performance of polyurethane/lead zirconate titanate ceramic composites. Mater. Des., 2013, 46, 503-510. doi:10.1016/j.matdes.2012.10.015http://dx.doi.org/10.1016/j.matdes.2012.10.015
Chung D. Materials for vibration damping. J. Mater. Sci., 2001, 36, 5733-5737. doi:10.1023/a:1012999616049http://dx.doi.org/10.1023/a:1012999616049
Liu Z. H.; Sheng M. Study on characteristics of sound absorption of underwater visco-elastic coated compound structures. Modern Appl. Sci., 2009, 3(1), 32-41. doi:10.5539/mas.v3n1p32http://dx.doi.org/10.5539/mas.v3n1p32
Jung K.; Yoon S.; Cho K.; Park J. K. Acoustic properties of nitrile butadiene rubber for underwater applications. J Appl. Polym. Sci., 2002, 85, 2764-2771. doi:10.1002/app.10758http://dx.doi.org/10.1002/app.10758
Chen B. W.; Dai J.; Song T. Y.; Guan Q. S. Research and development of high-performance high-damping rubber materials for high-damping rubber isolation bearings: a review. Polymers, 2022, 14(12), 24-60. doi:10.3390/polym14122427http://dx.doi.org/10.3390/polym14122427
Li Z. P.; Lu X.; Tao G.; Guo J. H.; Jiang H. W. Damping elastomer with broad temperature range based on irregular networks formed by end-linking of hydroxyl-terminated poly(dimethylsiloxane). Polymers, 2022, 14(12), 24-60.
Qin R.; Huang R. L.; Lu X. Use of gradient laminating to prepare NR/ENR composites with excellent damping performance. Mater. Des., 2018, 149, 43-50. doi:10.1016/j.matdes.2018.03.063http://dx.doi.org/10.1016/j.matdes.2018.03.063
Lu X.; Huang R. L.; Li H. M.; Long J.; Jiang Z. J. Preparation of an elastomer with broad damping temperature range based on EPDM/ENR blend. J. Elastom. Plast., 2017, 49, 758-773. doi:10.1177/0095244317698737http://dx.doi.org/10.1177/0095244317698737
Lu X.; Li X. J.; Tian M. Preparation of high damping elastomer with broad temperature and frequency ranges based on ternary rubber blends. Polym. Adv. Technol., 2014, 25, 21-28. doi:10.1002/pat.3199http://dx.doi.org/10.1002/pat.3199
Zhang C.; Pal K.; Byeon J. U.; Han S. M.; Kim J. K. A study on mechanical and thermal properties of silicone rubber/EPDM damping materials. J. Appl. Polym. Sci., 2011, 119, 2737-2741. doi:10.1002/app.31697http://dx.doi.org/10.1002/app.31697
Lei T.; Zhang Y. W.; Kuang D. L.; Yang Y. R. Preparation and properties of rubber blends for high-damping-isolation bearings. Polymers, 2019, 11(8), 1374. doi:10.3390/polym11081374http://dx.doi.org/10.3390/polym11081374
Lu X.; Yang Y. L.; Cheng B.; Li T. High damping epoxized natural rubber/diallyl adiallyl phthalate prepolymer (ENR/DAP‐A) blends engineered by interphase crosslinking. J. Appl. Polym. Sci., 2018, 135, 46300. doi:10.1002/app.46300http://dx.doi.org/10.1002/app.46300
Wang W. C.; Zhao D. T.; Yang J. N.; Nishi T.; Ito K.; Zhao X. Y.; Zhang L. Q. Novel slide-ring material/natural rubber composites with high damping property. Sci. Rep., 2016, 6, 22810. doi:10.1038/srep22810http://dx.doi.org/10.1038/srep22810
Hou Y. J.; Peng Y.; Li P.; Wu Q.; Zhang J. Q.; Li W. H.; Zhou G. W.; Wu J. R. Bioinspired design of high vibration-damping supramolecular elastomers based on multiple energy-dissipation mechanisms. ACS Appl. Mater. Interfaces, 2022, 14(30), 35097-35104. doi:10.1021/acsami.2c07604http://dx.doi.org/10.1021/acsami.2c07604
Cui H. W.; Jing Q.; Li D. W. Study on the high‐temperature damping properties of silicone rubber modified by boron‐terminated polysiloxane. J. Appl. Polym. Sci., 2022, 140(1), 1-11. doi:10.1002/app.53262http://dx.doi.org/10.1002/app.53262
Liu K.; Lv Q. Q.; Hua J. Study on damping properties of HVBR/EVM blends prepared by in situ polymerization. Polym. Test., 2017, 60, 321-325. doi:10.1016/j.polymertesting.2017.02.026http://dx.doi.org/10.1016/j.polymertesting.2017.02.026
James J.; Thomas G.; Sisanth K. S.; Maria H. J.; Rouxel D.; Strankowski M.; Kalarikkal N.; Laroze D.; Oluwafemi O.; Volova T.; Thomas S. Super tough interpenetrating polymeric network of styrene butadiene rubber-poly(methyl methacrylate) incorporated with general purpose carbon black (N660). J Appl. Polym. Sci., 2022, 139(40), 1-14. doi:10.1002/app.52978http://dx.doi.org/10.1002/app.52978
Debdatta R.; Dalvi Vishal G.; Srikanth B.; Sharma Sandeep K.; Rath Sangram K.; Kathi S.; Pujari Pradeep K. Interpenetrating polymer network of rubbery epoxy and glassy PMMA: network inhomogeneities and dynamic heterogeneities. ACS Appl. Polym. Mater., 2021, 3(10), 5073-5086. doi:10.1021/acsapm.1c00825http://dx.doi.org/10.1021/acsapm.1c00825
Wang T. M.; Chen S. B.; Wang Q. H.; Pei X. Q. Damping analysis of polyurethane/epoxy graft interpenetrating polymer network composites filled with short carbon fiber and micro hollow glass bead. Mater. Des., 2010, 31(8), 3810-3815. doi:10.1016/j.matdes.2010.03.029http://dx.doi.org/10.1016/j.matdes.2010.03.029
Zhao X. Y.; Fu G. Q.; Wang Y. M.; Wu Y. W.; Shou T.; Yin D. X.; Li X. L.; Hu S. K.; Zhang L. Q. Bio-based polyurethane/hindered phenol AO-80 composites for room temperature high damping properties. Compos. Part B, Eng., 2022, 243, 110118. doi:10.1016/j.compositesb.2022.110118http://dx.doi.org/10.1016/j.compositesb.2022.110118
Dong H. H.; Jiang Y.; Zhang Y. Enhancements in damping properties and thermal conductivity of acrylonitrile‐butadiene rubber by using hindered phenol modified alumina. J Appl. Polym. Sci., 2022, 139(30), 1-10. doi:10.1002/app.52696http://dx.doi.org/10.1002/app.52696
Liu K.; Zhao X. S.; Li P. P.; Wang Z. B.; Hua J. Study on epoxy modification of HVBR and damping performance of EHVBR/hindered phenol hybrids. J. Appl. Polym. Sci., 2019, 136(11), 1-9. doi:10.1002/app.47196http://dx.doi.org/10.1002/app.47196
Zhao X. Y.; Zhang G.; Lu F.; Zhang L. Q.; Wu S. Z. Molecular-level insight of hindered phenol AO-70/nitrile-butadiene rubber damping composites through a combination of a molecular dynamics simulation and experimental method. RSC Adv., 2016, 6(89), 85994-86005. doi:10.1039/c6ra17283khttp://dx.doi.org/10.1039/c6ra17283k
Zhao X. Y.; Xiang P.; Tian M.; Fong H.; Jin R. G.; Zhang L. Q. Nitrile butadiene rubber/hindered phenol nanocomposites with improved strength and high damping performance. Polymer, 2007, 48(20), 6056-6063. doi:10.1016/j.polymer.2007.08.011http://dx.doi.org/10.1016/j.polymer.2007.08.011
Fang S. F.; Li F. Z.; Liu J.; Zhang L. Q.; Wang D.; Liu B.; Wu S. W.; Tang Z. H.; Guo B. C. Rubber-reinforced rubbers toward the combination of high reinforcement and low energy loss. Nano Energy, 2021, 83, 105822. doi:10.1016/j.nanoen.2021.105822http://dx.doi.org/10.1016/j.nanoen.2021.105822
Lei Y. D.; Tang Z. H.; Zhu L. X.; Guo B. C.; Jia D. M. Functional thiol ionic liquids as novel interfacial modifiers in SBR/HNTs composites. Polymer, 2011, 52(5), 1337-1344. doi:10.1016/j.polymer.2011.01.024http://dx.doi.org/10.1016/j.polymer.2011.01.024
Zhang G. G.; Feng H. R.; Liang K.; Wang Z.; Li X. L.; Zhou X. X.; Guo B. C.; Zhang L. Q. Design of next-generation cross-linking structure for elastomers toward green process and a real recycling loop. Sci. Bull., 2020, 65(11), 889-898. doi:10.1016/j.scib.2020.03.008http://dx.doi.org/10.1016/j.scib.2020.03.008
Liu Q. Y.; Zhang J. X.; Li R. Y.; Wu Y. F.; Liu G. X.; Liu L.; Zhao X. Y.; Zhang J. C. Study on the relationship between structure and acoustic performance of NBR composite materials. Polymer, 2022, 258, 125284. doi:10.1016/j.polymer.2022.125284http://dx.doi.org/10.1016/j.polymer.2022.125284
Hosseinpour A.; Katbab A.; Ohadi A. Improving the sound absorption of a highly deformable nanocomposite foam based on ethylene-propylene-diene-monomer (EPDM) infused with multi-walled carbon nanotubes (MWCNTs) to absorb low-frequency waves. J Appl. Polym. Sci., 2019, 136(11), 1-9.
Huang J.; Kong S. X.; Tang Z. H.; Wu S. W.; Guo B. C.; Zhang L. Q. Facile strategy for the biomimetic heterogeneous design of elastomers with mechanical robustness, malleability, and functionality. ACS Macro Lett., 2020, 9(1), 49-55. doi:10.1021/acsmacrolett.9b00845http://dx.doi.org/10.1021/acsmacrolett.9b00845
0
浏览量
346
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构