浏览全部资源
扫码关注微信
东南大学材料科学与工程学院 南京 211102
[ "章炜,男,1987年生. 2009年在华侨大学获得工学学士学位,2011、2015年在加拿大滑铁卢大学分别获得硕士、博士学位,同年进入滑铁卢大学开展博士后研究工作,2016年回国进入东南大学工作,现为东南大学材料科学与工程学院副教授. 2022年,获英国皇家化学会全球1%高被引学者. 主要研究方向:柔性储能材料(锂离子电池、锌离子电池、超级电容器)、可穿戴电子设备(传感器、能量存储设备)、功能水凝胶材料(导电水凝胶、黏附水凝胶、载药水凝胶)和生物仿生材料与界面(仿生结构、仿生界面、仿生系统)." ]
纸质出版日期:2024-03-20,
网络出版日期:2023-12-21,
收稿日期:2023-09-25,
录用日期:2023-10-26
移动端阅览
章炜, 夏欢, 陈鹏宇, 曹昕, 张涵凝, 谢谦, 易承杰, 徐刚. 电子导电水凝胶电极在柔性储能系统中的应用研究进展. 高分子学报, 2024, 55(3), 255-274
Zhang, W.; Xia, H.; Chen, P. Y.; Cao, X.; Zhang, H. N.; Xie, Q.; Yi, C. J.; Xu, G. Research progress on the application of electrically conductive hydrogel electrodes in flexible energy storage systems. Acta Polymerica Sinica, 2024, 55(3), 255-274
章炜, 夏欢, 陈鹏宇, 曹昕, 张涵凝, 谢谦, 易承杰, 徐刚. 电子导电水凝胶电极在柔性储能系统中的应用研究进展. 高分子学报, 2024, 55(3), 255-274 DOI: 10.11777/j.issn1000-3304.2023.23237.
Zhang, W.; Xia, H.; Chen, P. Y.; Cao, X.; Zhang, H. N.; Xie, Q.; Yi, C. J.; Xu, G. Research progress on the application of electrically conductive hydrogel electrodes in flexible energy storage systems. Acta Polymerica Sinica, 2024, 55(3), 255-274 DOI: 10.11777/j.issn1000-3304.2023.23237.
电子导电水凝胶是一类将导电材料与水凝胶基体结合的新型水凝胶,具有高导电性、优异的柔韧性以及结构易于调控等优势,在柔性超级电容器和电池等领域表现出广阔的应用前景. 迄今为止,各种电子导电水凝胶电极已经被开发出来,用于制备具有优异机械和电化学性能的柔性储能设备. 本文回顾了近年来柔性超级电容器及电池中电子导电水凝胶电极的研究进展,讨论了提高导电水凝胶电极在柔性储能应用中的关键因素,系统地总结了基于导电聚合物水凝胶、石墨烯水凝胶及复合水凝胶电极的柔性超级电容器及基于硅基水凝胶和过渡金属氧化物水凝胶电极的柔性锂离子电池. 最后,探讨了在该领域中导电水凝胶电极面临的挑战和机遇.
Electrically conductive hydrogels (ECHs) represent a novel class of hydrogels that combine conductive materials with a hydrogel matrix. They exhibit high electrical conductivity
excellent flexibility
and ease of structural modulation
thereby offering promising prospects in fields such as flexible supercapacitors and batteries. Various ECHs electrodes have been developed to date for the fabrication of flexible energy storage devices with outstanding mechanical and electrochemical performance. This review summarizes recent advancements in ECHs electrodes for flexible supercapacitors and batteries
discusses key factors for enhancing their performance in flexible energy storage applications
outlines the synergistic effects between the hydrogel matrix and electroactive fillers in ECHs electrodes
and systematically introduces flexible supercapacitors based on conductive polymer hydrogels
graphene hydrogels
and composite hydrogel electrodes. Additionally
it presents flexible lithium-ion batteries employing silicon-based hydrogels and transition metal oxide hydrogel electrodes. Finally
challenges and opportunities in the realm of ECHs electrodes in this field are explored.
导电水凝胶柔性电极超级电容器锂离子电池
Electrically conductive hydrogelFlexible electrodeSupercapacitorLithium-ion battery
Sangeetha N. M.; Maitra U. Supramolecular gels: functions and uses. Chem. Soc. Rev., 2005, 34(10), 821-836. doi:10.1039/b417081bhttp://dx.doi.org/10.1039/b417081b
Johnson J. A.; Turro N. J.; Koberstein J. T.; Mark J. E. Some hydrogels having novel molecular structures. Prog. Polym. Sci., 2010, 35(3), 332-337. doi:10.1016/j.progpolymsci.2009.12.002http://dx.doi.org/10.1016/j.progpolymsci.2009.12.002
Qiu Y. Y.; Song B.; Pezzato C.; Shen D. K.; Liu W. Q.; Zhang L.; Feng Y. N.; Guo Q. H.; Cai K.; Li W.; Chen H. L.; Nguyen M. T.; Shi Y.; Cheng C. Y.; Astumian R. D.; Li X. P.; Stoddart J. F. A precise polyrotaxane synthesizer. Science, 2020, 368(6496), 1247-1253. doi:10.1126/science.abb3962http://dx.doi.org/10.1126/science.abb3962
Li X. Y.; Wang D. H.; Ran F. Key approaches and challenges in fabricating advanced flexible zinc-ion batteries with functional hydrogel electrolytes. Energy Storage Mater., 2023, 56, 351-393. doi:10.1016/j.ensm.2023.01.034http://dx.doi.org/10.1016/j.ensm.2023.01.034
Fu Q. J.; Hao S. W.; Zhang X. R.; Zhao H. N.; Xu F.; Yang J. All-round supramolecular zwitterionic hydrogel electrolytes enabling environmentally adaptive dendrite-free aqueous zinc ion capacitors. Energy Environ. Sci., 2023, 16(3), 1291-1311. doi:10.1039/d2ee03793ahttp://dx.doi.org/10.1039/d2ee03793a
Zhang H. D.; Gan X. T.; Song Z. P.; Zhou J. P. Amphoteric cellulose-based double-network hydrogel electrolyte toward ultra-stable Zn anode. Angew. Chem. Int. Ed., 2023, 62(13), e202217833. doi:10.1002/anie.202217833http://dx.doi.org/10.1002/anie.202217833
Chen P. Y.; Ruan Q. S.; Nasseri R.; Zhang H. N.; Xi X. F.; Xia H.; Xu G.; Xie Q.; Yi C. J.; Sun Z. M.; Shahsavan H.; Zhang W. Light-fueled hydrogel actuators with controlled deformation and photocatalytic activity. Adv. Sci., 2022, 9(34), e2204730. doi:10.1002/advs.202204730http://dx.doi.org/10.1002/advs.202204730
Shui T.; Pan M. F.; Li A.; Fan H. B.; Wu J. P.; Liu Q.; Zeng H. B. Poly(vinyl alcohol) (PVA)-based hydrogel scaffold with isotropic ultratoughness enabled by dynamic amine-catechol interactions. Chem. Mater., 2022, 34(19), 8613-8628. doi:10.1021/acs.chemmater.2c01582http://dx.doi.org/10.1021/acs.chemmater.2c01582
Shui T.; Pan M. F.; Lu Y.; Zhang J. W.; Liu Q. X.; Nikrityuk P. A.; Tang T.; Liu Q.; Zeng H. B. High-efficiency and durable removal of water-in-heavy oil emulsions enabled by delignified and carboxylated basswood with zwitterionic nanohydrogel coatings. J. Colloid Interface Sci., 2022, 612, 445-458. doi:10.1016/j.jcis.2021.12.146http://dx.doi.org/10.1016/j.jcis.2021.12.146
Xu G.; Xia H. A.; Chen P. Y.; She W.; Zhang H. N.; Ma J.; Ruan Q. S.; Zhang W.; Sun Z. M. Thermochromic hydrogels with dynamic solar modulation and regulatable critical response temperature for energy-saving smart windows. Adv. Funct. Mater., 2022, 32(5), 2109597. doi:10.1002/adfm.202109597http://dx.doi.org/10.1002/adfm.202109597
Chen Y.; Ma J.; Li D. H.; Zhu C. X.; Zhang W.; Miao C. Y. LaMnO3 nanocomposite double network hydrogel electrodes with enhanced electrochemical and mechanical performance for flexible supercapacitors. J. Alloys Compd., 2021, 888, 161555. doi:10.1016/j.jallcom.2021.161555http://dx.doi.org/10.1016/j.jallcom.2021.161555
Cheng T.; Zhang Y. Z.; Wang S.; Chen Y. L.; Gao S. Y.; Wang F.; Lai W. Y.; Huang W. Conductive hydrogel-based electrodes and electrolytes for stretchable and self-healable supercapacitors. Adv. Funct. Mater., 2021, 31(24), 2101303. doi:10.1002/adfm.202101303http://dx.doi.org/10.1002/adfm.202101303
Zhang W. T.; Guo F. J.; Mi H. Y.; Wu Z. S.; Ji C. C.; Yang C. C.; Qiu J. S. Kinetics-boosted effect enabled by zwitterionic hydrogel electrolyte for highly reversible zinc anode in zinc-ion hybrid micro-supercapacitors. Adv. Energy Mater., 2022, 12(40), 2202219. doi:10.1002/aenm.202202219http://dx.doi.org/10.1002/aenm.202202219
Sekine S.; Ido Y.; Miyake T.; Nagamine K.; Nishizawa M. Conducting polymer electrodes printed on hydrogel. J. Am. Chem. Soc., 2010, 132(38), 13174-13175. doi:10.1021/ja1062357http://dx.doi.org/10.1021/ja1062357
Lo C. Y.; Zhao Y. S.; Kim C.; Alsaid Y.; Khodambashi R.; Peet M.; Fisher R.; Marvi H.; Berman S.; Aukes D.; He X. M. Highly stretchable self-sensing actuator based on conductive photothermally-responsive hydrogel. Mater. Today, 2021, 50, 35-43. doi:10.1016/j.mattod.2021.05.008http://dx.doi.org/10.1016/j.mattod.2021.05.008
You J. O.; Auguste D. T. Conductive, physiologically responsive hydrogels. Langmuir, 2010, 26(7), 4607-4612. doi:10.1021/la100294phttp://dx.doi.org/10.1021/la100294p
Ferris C. J.; Panhuis M. I. H. Conducting bio-materials based on gellan gum hydrogels. Soft Matter, 2009, 5(18), 3430-3437. doi:10.1039/b909795chttp://dx.doi.org/10.1039/b909795c
Li W. W.; Liu J. A.; Wei J. N.; Yang Z. Y.; Ren C. L.; Li B. X. Recent progress of conductive hydrogel fibers for flexible electronics: fabrications, applications, and perspectives. Adv. Funct. Mater., 2023, 33(17), 2213485. doi:10.1002/adfm.202213485http://dx.doi.org/10.1002/adfm.202213485
Zhang W.; Ma J.; Zhang W. J.; Zhang P. G.; He W.; Chen J.; Sun Z. M. A multidimensional nanostructural design towards electrochemically stable and mechanically strong hydrogel electrodes. Nanoscale, 2020, 12(12), 6637-6643. doi:10.1039/d0nr01414ahttp://dx.doi.org/10.1039/d0nr01414a
Liao M. H.; Wan P. B.; Wen J. R.; Gong M.; Wu X. X.; Wang Y. G.; Shi R.; Zhang L. Q. Wearable, healable, and adhesive epidermal sensors assembled from mussel-inspired conductive hybrid hydrogel framework. Adv. Funct. Mater., 2017, 27(48), 1703852. doi:10.1002/adfm.201703852http://dx.doi.org/10.1002/adfm.201703852
Han L.; Lu X.; Liu K. Z.; Wang K. F.; Fang L. M.; Weng L. T.; Zhang H. P.; Tang Y. H.; Ren F. Z.; Zhao C. C.; Sun G. X.; Liang R.; Li Z. J. Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS Nano, 2017, 11(3), 2561-2574. doi:10.1021/acsnano.6b05318http://dx.doi.org/10.1021/acsnano.6b05318
Li J. Y.; Ding Q. L.; Wang H.; Wu Z. X.; Gui X. C.; Li C. W.; Hu N.; Tao K.; Wu J. Engineering smart composite hydrogels for wearable disease monitoring. Nano Micro Lett., 2023, 15(1), 1-45. doi:10.1007/s40820-023-01079-5http://dx.doi.org/10.1007/s40820-023-01079-5
Zhang C. Y.; Nayeem M. O. G.; Wang Z. Q.; Pu X.; Dagdeviren C.; Wang Z. L.; Zhang X. H.; Liu R. Y. Conductive hydrogels for bioenergy harvesting and self-powered application. Prog. Mater. Sci., 2023, 138, 101156. doi:10.1016/j.pmatsci.2023.101156http://dx.doi.org/10.1016/j.pmatsci.2023.101156
Gao W.; Huang J. Y.; He J.; Zhou R. H.; Li Z. M.; Chen Z. Y.; Zhang Y. F.; Pan C. F. Recent advances in ultrathin materials and their applications in e-skin. InfoMat, 2023, 5(8), e12426. doi:10.1002/inf2.12426http://dx.doi.org/10.1002/inf2.12426
Caruso M. R.; D'Agostino G.; Milioto S.; Cavallaro G.; Lazzara G. A review on biopolymer-based treatments for consolidation and surface protection of cultural heritage materials. J. Mater. Sci., 2023, 58, 12954-12975. doi:10.1007/s10853-023-08833-5http://dx.doi.org/10.1007/s10853-023-08833-5
Hu H.; Tong Y. W.; He Y. L. Current insight into enhanced strategies and interaction mechanisms of hydrogel materials for phosphate removal and recovery from wastewater. Sci. Total Environ., 2023, 892, 164514. doi:10.1016/j.scitotenv.2023.164514http://dx.doi.org/10.1016/j.scitotenv.2023.164514
Flores-Valenzuela L. E.; González-Fernández J. V.; Carranza-Oropeza M. V. Hydrogel applicability for the industrial effluent treatment: a systematic review and bibliometric analysis. Polymers, 2023, 15(11), 2417. doi:10.3390/polym15112417http://dx.doi.org/10.3390/polym15112417
Ding H. J.; Zhong M. J.; Kim Y. J.; Pholpabu P.; Balasubramanian A.; Hui C. M.; He H. K.; Yang H.; Matyjaszewski K.; Bettinger C. J. Biologically derived soft conducting hydrogels using heparin-doped polymer networks. ACS Nano, 2014, 8(5), 4348-4357. doi:10.1021/nn406019mhttp://dx.doi.org/10.1021/nn406019m
Guarino V.; Alvarez-Perez M. A.; Borriello A.; Napolitano T.; Ambrosio L. Conductive PANi/PEGDA macroporous hydrogels for nerve regeneration. Adv. Healthc. Mater., 2013, 2(1), 218-227. doi:10.1002/adhm.201200152http://dx.doi.org/10.1002/adhm.201200152
Guo B. L.; Glavas L.; Albertsson A. C. Biodegradable and electrically conducting polymers for biomedical applications. Prog. Polym. Sci., 2013, 38(9), 1263-1286. doi:10.1016/j.progpolymsci.2013.06.003http://dx.doi.org/10.1016/j.progpolymsci.2013.06.003
Miguel F.; Barbosa F.; Ferreira F.; Silva J. C. Electrically conductive hydrogels for articular cartilage tissue engineering. Gels, 2022, 8(11), 710. doi:10.3390/gels8110710http://dx.doi.org/10.3390/gels8110710
Chen Y.; Wang X.; Tao S.; Wang Q.; Ma P. Q.; Li Z. B.; Wu Y. L.; Li D. W. Research advances in smart responsive-hydrogel dressings with potential clinical diabetic wound healing properties. Mil. Med. Res., 2023, 10(1), 1-24. doi:10.1186/s40779-023-00473-9http://dx.doi.org/10.1186/s40779-023-00473-9
Lv Q. Y.; Li X. Y.; Tian X.; Fu D. A.; Liu H. A.; Liu J. A.; Song Y.; Cai B.; Wang J. A.; Su Q. F.; Chen W.; Zou M. Z.; Xiao F.; Wang S. A.; Wang Z.; Wang L. A degradable and biocompatible supercapacitor implant based on functional sericin hydrogel electrode. Adv. Energy Mater., 2023, 13(16), 2203814. doi:10.1002/aenm.202203814http://dx.doi.org/10.1002/aenm.202203814
Yang R. X.; Chen X. Y.; Zheng Y.; Chen K. Q.; Zeng W. S.; Wu X. Recent advances in the 3D printing of electrically conductive hydrogels for flexible electronics. J. Mater. Chem. C, 2022, 10(14), 5380-5399. doi:10.1039/d1tc06162chttp://dx.doi.org/10.1039/d1tc06162c
Zheng B. H.; Zhou H. W.; Wang Z.; Gao Y.; Zhao G. X.; Zhang H. L.; Jin X. L.; Liu H. B.; Qin Z. H.; Chen W. X.; Ma A. J.; Zhao W. F.; Wu Y. P. Fishing net-inspired mutiscale ionic organohydrogels with outstanding mechanical robustness for flexible electronic devices. Adv. Funct. Mater., 2023, 33(28), 2213501. doi:10.1002/adfm.202213501http://dx.doi.org/10.1002/adfm.202213501
Li L.; Meng J. A.; Zhang M. T.; Liu T. X.; Zhang C. Recent advances in conductive polymer hydrogel composites and nanocomposites for flexible electrochemical supercapacitors. Chem. Commun., 2022, 58(2), 185-207. doi:10.1039/d1cc05526ghttp://dx.doi.org/10.1039/d1cc05526g
Winter M.; Brodd R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev., 2004, 104(10), 4245-4270. doi:10.1021/cr020730khttp://dx.doi.org/10.1021/cr020730k
Wang Y. G.; Song Y. F.; Xia Y. Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev., 2016, 45(21), 5925-5950. doi:10.1039/c5cs00580ahttp://dx.doi.org/10.1039/c5cs00580a
Shen Y. L.; Zhang Q. H.; Wang Y. J.; Gu L.; Zhao X. Y.; Shen X. D. A pyrite iron disulfide cathode with a copper current collector for high-energy reversible magnesium-ion storage. Adv. Mater., 2021, 33(41), e2103881. doi:10.1002/adma.202103881http://dx.doi.org/10.1002/adma.202103881
Liu X. W.; Chen C.; He Q.; Kong Q.; Blackwood D.; Li N.; Yu L.; Chen J. Self‐supported transition metal-based nanoarrays for efficient energy storage. Chem. Rec., 2022, 22(10), e202100294. doi:10.1002/tcr.202100294http://dx.doi.org/10.1002/tcr.202100294
Wang Y. N.; Jiang J. Y.; Liu X. X.; Liu X. Q.; Xiang Y.; Wu R.; Chen Y.; Chen J. S. Local confinement and alloy/dealloy activation of Sn-Cu nanoarrays for high-performance lithium-ion battery. Electrochim. Acta, 2020, 336, 135690. doi:10.1016/j.electacta.2020.135690http://dx.doi.org/10.1016/j.electacta.2020.135690
Cao X.; You Y. Y.; Sha D. W.; Xia H. A.; Wang H.; Zhang J.; Hu R. X.; Wei Y. C.; Bao Z. H.; Xu Y.; Pan L.; Lu C. J.; He W.; Zhou M.; Sun Z. M. Ultralong cycle life for deep potassium storage enabled by BiOCl/MXene van der Waals heterostructures. Adv. Funct. Mater., 2023, 33(34), 2303275. doi:10.1002/adfm.202303275http://dx.doi.org/10.1002/adfm.202303275
Sha D.; You Y. R.; Hu R.; Cao X.; Wei Y. C.; Zhang H.; Pan L.; Sun Z. M. Comprehensively understanding the role of anion vacancies on K‐ion storage: a case study of Se‐vacancy‐engineered VSe2. Adv. Mater., 2023, 35(15), 2211311.
Liu X. X.; He Q. A.; Xiao S. H.; Li X. R.; Chang L.; Xiang Y.; Hu K.; Niu X. B.; Wu R.; Chen J. S. Realizing efficient overall water splitting by tuning the cobalt content in self-supported Nix-coy-P microarrays. ChemElectroChem, 2021, 8(7), 1307-1315. doi:10.1002/celc.202001585http://dx.doi.org/10.1002/celc.202001585
Jiang J. Y.; Liu X.; Han J. Y.; Hu K.; Chen J. Self-supported sheets-on-wire CuO@Ni(OH)2/Zn(OH)2 nanoarrays for high-performance flexible quasi-solid-state supercapacitor. Processes, 2021, 9(4), 680. doi:10.3390/pr9040680http://dx.doi.org/10.3390/pr9040680
Liu X. X.; Wu R.; Wang Y.; Xiao S. H.; He Q.; Xiao B. N.; Blackwood D. J.; Chen J. S. Self-supported core/shell Co3O4@Ni3S2 nanowires for high-performance supercapacitors. Electrochim. Acta, 2019, 311, 221-229. doi:10.1016/j.electacta.2019.03.212http://dx.doi.org/10.1016/j.electacta.2019.03.212
Wu F. S.; Hu P. Y.; Hu F. Y.; Tian Z. H.; Tang J. W.; Zhang P. G.; Pan L.; Barsoum M. W.; Cai L. Z.; Sun Z. M. Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation. Nano Micro Lett., 2023, 15(1), 194. doi:10.1007/s40820-023-01158-7http://dx.doi.org/10.1007/s40820-023-01158-7
Shao Z. P.; Cheng S. T.; Zhang Y. X.; Guo H. Z.; Cui X. S.; Sun Z. H.; Liu Y. P.; Wu Y.; Cui P.; Fu J. C.; Su Q.; Xie E. Q. Wearable and fully biocompatible all-in-one structured "Paper-like" zinc ion battery. ACS Appl. Mater. Interfaces, 2021, 13(29), 34349-34356. doi:10.1021/acsami.1c08388http://dx.doi.org/10.1021/acsami.1c08388
Yu K. Q.; Ji X. Z.; Yuan T. Y.; Cheng Y.; Li J. J.; Hu X. Y.; Liu Z. F.; Zhou X. A.; Fang L. Robust jumping actuator with a shrimp-shell architecture. Adv. Mater., 2021, 33(44), 2104558. doi:10.1002/adma.202104558http://dx.doi.org/10.1002/adma.202104558
Wang L. Y.; Yang Y.; Chen Y. H.; Majidi C.; Iida F.; Askounis E.; Pei Q. B. Controllable and reversible tuning of material rigidity for robot applications. Mater. Today, 2018, 21(5), 563-576. doi:10.1016/j.mattod.2017.10.010http://dx.doi.org/10.1016/j.mattod.2017.10.010
Liu Z. F.; Fang S.; Moura F. A.; Ding J. N.; Jiang N.; Di J.; Zhang M.; Lepró X.; Galvão D. S.; Haines C. S.; Yuan N. Y.; Yin S. G.; Lee D. W.; Wang R.; Wang H. Y.; Lv W.; Dong C.; Zhang R. C.; Chen M. J.; Yin Q.; Chong Y. T.; Zhang R.; Wang X.; Lima M. D.; Ovalle-Robles R.; Qian D.; Lu H.; Baughman R. H. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles. Science, 2015, 349 (6246), 400-404. doi:10.1126/science.aaa7952http://dx.doi.org/10.1126/science.aaa7952
Zhu Y. E.; Peng L. L.; Fang Z. W.; Yan C. S.; Zhang X. A.; Yu G. H. Structural engineering of 2D nanomaterials for energy storage and catalysis. Adv. Mater., 2018, 30(15), 1706347. doi:10.1002/adma.201706347http://dx.doi.org/10.1002/adma.201706347
Shi Y.; Yu G. H. Designing hierarchically nanostructured conductive polymer gels for electrochemical energy storage and conversion. Chem. Mater., 2016, 28(8), 2466-2477. doi:10.1021/acs.chemmater.5b04879http://dx.doi.org/10.1021/acs.chemmater.5b04879
Yin X. D.; Zheng W.; Tang H. F.; Zhang P. G.; Sun Z. M. Novel 2D/2D 1T-MoS2/Ti3C2Tz heterostructures for high-voltage symmetric supercapacitors. Nanoscale, 2023, 15(24), 10437-10446.
Lee G.; Kang S. K.; Won S. M.; Gutruf P.; Jeong Y. R.; Koo J.; Lee S. S.; Rogers J. A.; Ha J. S. Fully biodegradable microsupercapacitor for power storage in transient electronics. Adv. Energy Mater., 2017, 7(18), 1700157. doi:10.1002/aenm.201700157http://dx.doi.org/10.1002/aenm.201700157
Zheng S. H.; Wang H.; Das P.; Zhang Y.; Cao Y. X.; Ma J. X.; Liu S. F.; Wu Z. S. Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all-flexible self-powered integrated systems. Adv. Mater., 2021, 33(10), 2005449. doi:10.1002/adma.202005449http://dx.doi.org/10.1002/adma.202005449
Chen C. R.; Qin H. L.; Cong H. P.; Yu S. H. A highly stretchable and real-time healable supercapacitor. Adv. Mater., 2019, 31(19), 1900573. doi:10.1002/adma.201900573http://dx.doi.org/10.1002/adma.201900573
Zhang H. N.; Chen P. Y.; Xia H.; Xu G.; Wang Y. P.; Zhang T. F.; Sun W. W.; Turgunov M.; Zhang W.; Sun Z. M. An integrated self-healing anode assembled via dynamic encapsulation of liquid metal with a 3D Ti3C2Tx network for enhanced lithium storage. Energy Environ. Sci., 2022, 15(12), 5240-5250.
Zha W. W.; Ruan Q. S.; Kong L. Q.; Xi X. F.; Ali Turgunov M.; Zhang W.; Chang K.; Sun Z. M. A suspension-mimicking hydrogel-based n-type polymer photocathode for solar-driven water splitting. Cell Rep. Phys. Sci., 2022, 3(5), 100863. doi:10.1016/j.xcrp.2022.100863http://dx.doi.org/10.1016/j.xcrp.2022.100863
Chee W.; Lim H.; Zainal Z.; Huang N.; Harrison I.; Andou Y. Flexible graphene-based supercapacitors: a review. J. Phys. Chem. C, 2016, 120, 4153-4172. doi:10.1021/acs.jpcc.5b10187http://dx.doi.org/10.1021/acs.jpcc.5b10187
Conway B. E. Transition from "supercapacitor" to "battery" behavior in electrochemical energy storage. J. Electrochem. Soc., 1991, 138(6), 1539. doi:10.1149/1.2085829http://dx.doi.org/10.1149/1.2085829
Hall P. J.; Mirzaeian M.; Isobel Fletcher S.; Sillars F. B.; Rennie A. J. R.; Shitta-Bey G. O.; Wilson G.; Cruden A.; Carter R. Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ. Sci., 2010, 3(9), 1238-1251. doi:10.1039/c0ee00004chttp://dx.doi.org/10.1039/c0ee00004c
Liu Q.; Nayfeh O.; Nayfeh M. H.; Yau S. T. Flexible supercapacitor sheets based on hybrid nanocomposite materials. Nano Energy, 2013, 2(1), 133-137. doi:10.1016/j.nanoen.2012.08.007http://dx.doi.org/10.1016/j.nanoen.2012.08.007
Yang Z. B.; Deng J. E.; Chen X. L.; Ren J.; Peng H. S. A highly stretchable, fiber-shaped supercapacitor. Angew. Chem. Int. Ed., 2013, 52(50), 13453-13457. doi:10.1002/anie.201307619http://dx.doi.org/10.1002/anie.201307619
Yu C. J.; Masarapu C.; Rong J. P.; Wei B. Q.; Jiang H. Q. Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms. Adv. Mater., 2009, 21(47), 4793-4797. doi:10.1002/adma.200901775http://dx.doi.org/10.1002/adma.200901775
Ghosh D.; Das C. K. Hydrothermal growth of hierarchical Ni3S2 and Co3S4 on a reduced graphene oxide hydrogel@Ni foam: a high-energy-density aqueous asymmetric supercapacitor. ACS Appl. Mater. Interfaces, 2015, 7(2), 1122-1131. doi:10.1021/am506738yhttp://dx.doi.org/10.1021/am506738y
Hu L. B.; Pasta M.; La Mantia F.; Cui L. F.; Jeong S.; Deshazer H. D.; Choi J. W.; Han S. M.; Cui Y. Stretchable, porous, and conductive energy textiles. Nano Lett., 2010, 10(2), 708-714. doi:10.1021/nl903949mhttp://dx.doi.org/10.1021/nl903949m
Armelin E.; Pérez-Madrigal M. M.; Alemán C.; Díaz D. D. Current status and challenges of biohydrogels for applications as supercapacitors and secondary batteries. J. Mater. Chem. A, 2016, 4(23), 8952-8968. doi:10.1039/c6ta01846ghttp://dx.doi.org/10.1039/c6ta01846g
Shi Y.; Pan L. J.; Liu B. R.; Wang Y. Q.; Cui Y.; Bao Z. N.; Yu G. H. Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J. Mater. Chem. A, 2014, 2(17), 6086-6091. doi:10.1039/c4ta00484ahttp://dx.doi.org/10.1039/c4ta00484a
Shown I.; Ganguly A.; Chen L. C.; Chen K. H. Conducting polymer-based flexible supercapacitor. Energy Sci. Eng., 2015, 3(1), 2-26. doi:10.1002/ese3.50http://dx.doi.org/10.1002/ese3.50
Zeng S.; Chen H. Y.; Cai F.; Kang Y. R.; Chen M. H.; Li Q. W. Electrochemical fabrication of carbon nanotube/polyaniline hydrogel film for all-solid-state flexible supercapacitor with high areal capacitance. J. Mater. Chem. A, 2015, 3(47), 23864-23870. doi:10.1039/c5ta05937bhttp://dx.doi.org/10.1039/c5ta05937b
Li W. W.; Lu H.; Zhang N.; Ma M. M. Enhancing the properties of conductive polymer hydrogels by freeze-thaw cycles for high-performance flexible supercapacitors. ACS Appl. Mater. Interfaces, 2017, 9(23), 20142-20149. doi:10.1021/acsami.7b05963http://dx.doi.org/10.1021/acsami.7b05963
Wang K.; Zhang X.; Li C.; Sun X. Z.; Meng Q. H.; Ma Y. W.; Wei Z. X. Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performance. Adv. Mater., 2015, 27(45), 7451-7457. doi:10.1002/adma.201503543http://dx.doi.org/10.1002/adma.201503543
Zhang L.; Shi G. Q. Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J. Phys. Chem. C, 2011, 115(34), 17206-17212. doi:10.1021/jp204036ahttp://dx.doi.org/10.1021/jp204036a
Wu Y.; Liu S.; Zhao K.; Yuan H.; Lv K.; Ye G. Facile synthesis of 3D graphene hydrogel/carbon nanofibers composites for supercapacitor electrode. ECS Solid State Lett., 2015, 4(12), M23-M25. doi:10.1149/2.0031512sslhttp://dx.doi.org/10.1149/2.0031512ssl
Xu Y. X.; Lin Z. Y.; Huang X. Q.; Wang Y.; Huang Y.; Duan X. F. Functionalized graphene hydrogel-based high-performance supercapacitors. Adv. Mater., 2013, 25(40), 5779-5784. doi:10.1002/adma.201301928http://dx.doi.org/10.1002/adma.201301928
Xu Y. X.; Lin Z. Y.; Huang X. Q.; Liu Y. A.; Huang Y.; Duan X. F. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano, 2013, 7(5), 4042-4049. doi:10.1021/nn4000836http://dx.doi.org/10.1021/nn4000836
Chen P.; Yang J. J.; Li S. S.; Wang Z.; Xiao T. Y.; Qian Y. H.; Yu S. H. Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy, 2013, 2(2), 249-256. doi:10.1016/j.nanoen.2012.09.003http://dx.doi.org/10.1016/j.nanoen.2012.09.003
Wang Y. F.; Yang X. W.; Pandolfo A. G.; Ding J. E.; Li D. High-rate and high-volumetric capacitance of compact graphene-polyaniline hydrogel electrodes. Adv. Energy Mater., 2016, 6(11), 1600185. doi:10.1002/aenm.201600185http://dx.doi.org/10.1002/aenm.201600185
Mao L.; Guan C.; Huang X. L.; Ke Q. Q.; Zhang Y.; Wang J. 3D graphene-nickel hydroxide hydrogel electrode for high-performance supercapacitor. Electrochim. Acta, 2016, 196, 653-660. doi:10.1016/j.electacta.2016.02.084http://dx.doi.org/10.1016/j.electacta.2016.02.084
Yang Y. Y.; Liang Y. R.; Zhang Y. D.; Zhang Z. Y.; Li Z. M.; Hu Z. A. Three-dimensional graphene hydrogel supported ultrafine RuO2 nanoparticles for supercapacitor electrodes. New J. Chem., 2015, 39(5), 4035-4040. doi:10.1039/c5nj00062ahttp://dx.doi.org/10.1039/c5nj00062a
Zhang H.; Xie A. J.; Wang C. P.; Wang H. S.; Shen Y. H.; Tian X. Y. Bifunctional reduced graphene oxide/V2O5 composite hydrogel: fabrication, high performance as electromagnetic wave absorbent and supercapacitor. ChemPhysChem, 2014, 15(2), 366-373. doi:10.1002/cphc.201300822http://dx.doi.org/10.1002/cphc.201300822
Pattananuwat P.; Aht-ong D. Controllable morphology of polypyrrole wrapped graphene hydrogel framework composites via cyclic voltammetry with aiding of poly(sodium 4-styrene sulfonate) for the flexible supercapacitor electrode. Electrochim. Acta, 2017, 224, 149-160. doi:10.1016/j.electacta.2016.12.036http://dx.doi.org/10.1016/j.electacta.2016.12.036
Zhang N. S.; Fu C. P.; Liu D.; Li Y. L.; Zhou H. H.; Kuang Y. F. Three-dimensional pompon-like MnO2/graphene hydrogel composite for supercapacitor. Electrochim. Acta, 2016, 210, 804-811. doi:10.1016/j.electacta.2016.06.004http://dx.doi.org/10.1016/j.electacta.2016.06.004
Pattananuwat P.; Aht-Ong D. One-step method to fabricate the highly porous layer of poly(pyrrole/(3,4-ethylenedioxythiophene)/) wrapped graphene hydrogel composite electrode for the flexibile supercapacitor. Mater. Lett., 2016, 184, 60-64. doi:10.1016/j.matlet.2016.08.031http://dx.doi.org/10.1016/j.matlet.2016.08.031
Xiang X.; Zhang W. J.; Yang Z. P.; Zhang Y. Y.; Zhang H. J.; Zhang H.; Guo H. T.; Zhang X. T.; Li Q. W. Smart and flexible supercapacitor based on a porous carbon nanotube film and polyaniline hydrogel. RSC Adv., 2016, 6(30), 24946-24951. doi:10.1039/c6ra00705hhttp://dx.doi.org/10.1039/c6ra00705h
Pan L. J.; Yu G. H.; Zhai D. Y.; Lee H. R.; Zhao W. T.; Liu N.; Wang H. L.; Tee B. C. K.; Shi Y.; Cui Y.; Bao Z. N. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc. Natl. Acad. Sci. U. S. A., 2012, 109(24), 9287-9292. doi:10.1073/pnas.1202636109http://dx.doi.org/10.1073/pnas.1202636109
Hao G. P.; Hippauf F.; Oschatz M.; Wisser F. M.; Leifert A.; Nickel W.; Mohamed-Noriega N.; Zheng Z. K.; Kaskel S. Stretchable and semitransparent conductive hybrid hydrogels for flexible supercapacitors. ACS Nano, 2014, 8(7), 7138-7146. doi:10.1021/nn502065uhttp://dx.doi.org/10.1021/nn502065u
Li W. W.; Gao F. X.; Wang X. Q.; Zhang N.; Ma M. M. Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors. Angew. Chem. Int. Ed., 2016, 55(32), 9196-9201. doi:10.1002/anie.201603417http://dx.doi.org/10.1002/anie.201603417
Luan V. H.; Tien H. N.; Hoa L. T.; Hien N. T. M.; Oh E. S.; Chung J.; Kim E. J.; Choi W. M.; Kong B. S.; Hur S. H. Synthesis of a highly conductive and large surface area graphene oxide hydrogel and its use in a supercapacitor. J. Mater. Chem. A, 2013, 1(2), 208-211. doi:10.1039/c2ta00444ehttp://dx.doi.org/10.1039/c2ta00444e
Zhang Z. Y.; Xiao F.; Guo Y. L.; Wang S.; Liu Y. Q. One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities. ACS Appl. Mater. Interfaces, 2013, 5(6), 2227-2233. doi:10.1021/am303299rhttp://dx.doi.org/10.1021/am303299r
Ghosh S.; Inganäs O. Conducting polymer hydrogels as 3D electrodes: applications for supercapacitors. Adv. Mater., 1999, 11(14), 1214-1218. doi:10.1002/(sici)1521-4095(199910)11:14<1214::aid-adma1214>3.0.co;2-3http://dx.doi.org/10.1002/(sici)1521-4095(199910)11:14<1214::aid-adma1214>3.0.co;2-3
Li W.; Li X. F.; Zhang X. T.; Wu J.; Tian X. H.; Zeng M. J.; Qu J.; Yu Z. Z. Flexible poly(vinyl alcohol)-polyaniline hydrogel film with vertically aligned channels for an integrated and self-healable supercapacitor. ACS Appl. Energy Mater., 2020, 3(9), 9408-9416. doi:10.1021/acsaem.0c01794http://dx.doi.org/10.1021/acsaem.0c01794
Sun K. J.; Feng E. K.; Zhao G. H.; Peng H.; Wei G. G.; Lv Y. Y.; Ma G. F. A single robust hydrogel film based integrated flexible supercapacitor. ACS Sustainable Chem. Eng., 2019, 7(1), 165-173. doi:10.1021/acssuschemeng.8b02728http://dx.doi.org/10.1021/acssuschemeng.8b02728
Xu Y. X.; Sheng K. X.; Li C.; Shi G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano, 2010, 4(7), 4324-4330. doi:10.1021/nn101187zhttp://dx.doi.org/10.1021/nn101187z
Hu F. Y.; Wang X. H.; Niu H. H.; Zhang S.; Fan B. B.; Zhang R. Synthesis and electromagnetic wave absorption of novel Mo2TiC2Tx MXene with diverse etching methods. J. Mater. Sci., 2022, 57(16), 7849-7862. doi:10.1007/s10853-022-07202-yhttp://dx.doi.org/10.1007/s10853-022-07202-y
Hu F. Y.; Zhang F.; Wang X. H.; Li Y. Y.; Wang H. L.; Zhang R.; Li H. X.; Fan B. B. Ultrabroad band microwave absorption from hierarchical MoO3/TiO2/Mo2TiC2Tx hybrids via annealing treatment. J. Adv. Ceram., 2022, 11(9), 1466-1478. doi:10.1007/s40145-022-0624-0http://dx.doi.org/10.1007/s40145-022-0624-0
Wang X. H.; Bao S.; Hu F. Y.; Shang S. Y.; Chen Y. Q.; Zhao N.; Zhang R.; Zhao B.; Fan B. B. The effect of honeycomb pore size on the electromagnetic interference shielding performance of multifunctional 3D honeycomb-like Ag/Ti3C2Tx hybrid structures. Ceram. Int., 2022, 48(12), 16892-16900.
Bao Z. H.; Lu C. J.; Cao X.; Zhang P. G.; Yang L.; Zhang H.; Sha D. W.; He W.; Zhang W.; Pan L.; Sun Z. M. Role of MXene surface terminations in electrochemical energy storage: a review. Chin. Chem. Lett., 2021, 32(9), 2648-2658. doi:10.1016/j.cclet.2021.02.012http://dx.doi.org/10.1016/j.cclet.2021.02.012
Shang S. Y.; Zhao N.; Chen Y. Q.; Wang X. H.; Hu F. Y.; Fan B. B.; Zhao B. A.; Lu H. X.; Wang H. L.; Zhang R. Ti3C2Tx/rGO aerogel towards high electromagnetic wave absorption and thermal resistance. CrystEngComm, 2022, 24(25), 4556-4563. doi:10.1039/d2ce00578fhttp://dx.doi.org/10.1039/d2ce00578f
Hu R.; Sha D.; Cao X.; Lu C. J.; Wei Y. C.; Pan L.; Sun Z. M. Anchoring metal‐organic framework‐derived ZnTe@C onto elastic Ti3C2Tx MXene with 0D/2D dual confinement for ultrastable potassium‐ion storage. Adv. Energy Mater. 2022, 12(47), 2203118. doi:10.1002/aenm.202203118http://dx.doi.org/10.1002/aenm.202203118
Qiao J. Y.; Kong L. Q.; Xu S. K.; Lin K. X.; He W.; Ni M.; Ruan Q. S.; Zhang P. G.; Liu Y.; Zhang W.; Pan L.; Sun Z. M. Research progress of MXene-based catalysts for electrochemical water-splitting and metal-air batteries. Energy Storage Mater., 2021, 43, 509-530. doi:10.1016/j.ensm.2021.09.034http://dx.doi.org/10.1016/j.ensm.2021.09.034
Wu F. S.; Tian Z. H.; Hu P. Y.; Tang J. W.; Xu X. Q.; Pan L.; Liu J.; Zhang P. G.; Sun Z. M. Lightweight and flexible PAN@PPy/MXene films with outstanding electromagnetic interference shielding and Joule heating performance. Nanoscale, 2022, 14(48), 18133-18142. doi:10.1039/d2nr05318ghttp://dx.doi.org/10.1039/d2nr05318g
Li K.; Zhao J.; Zhussupbekova A.; Shuck C. E.; Hughes L.; Dong Y. Y.; Barwich S.; Vaesen S.; Shvets I. V.; Möbius M.; Schmitt W.; Gogotsi Y.; Nicolosi V. 4D printing of MXene hydrogels for high-efficiency pseudocapacitive energy storage. Nat. Commun., 2022, 13(1), 6884. doi:10.1038/s41467-022-34583-0http://dx.doi.org/10.1038/s41467-022-34583-0
Wang G. P.; Zhang L.; Zhang J. J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev., 2012, 41(2), 797-828. doi:10.1039/c1cs15060jhttp://dx.doi.org/10.1039/c1cs15060j
Choudhury N. A.; Sampath S.; Shukla A. K. Hydrogel-polymer electrolytes for electrochemical capacitors: an overview. Energy Environ. Sci., 2009, 2(1), 55-67. doi:10.1039/b811217ghttp://dx.doi.org/10.1039/b811217g
Huang Y.; Li H. F.; Wang Z. F.; Zhu M. S.; Pei Z. X.; Xue Q.; Huang Y.; Zhi C. Y. Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy, 2016, 22, 422-438. doi:10.1016/j.nanoen.2016.02.047http://dx.doi.org/10.1016/j.nanoen.2016.02.047
He W.; Fan Z. X.; Huang Z. Q.; Liu X. Y.; Qian J. C.; Ni M.; Zhang P. G.; Hu L. F.; Sun Z. M. A Li+ and PANI co-intercalation strategy for hydrated V2O5 to enhance zinc ion storage performance. J. Mater. Chem. A, 2022, 10(36), 18962-18971. doi:10.1039/d2ta03145khttp://dx.doi.org/10.1039/d2ta03145k
Cao X.; Xia H. A.; Zhao X. Y. Toward dendrite-free alkaline zinc-based rechargeable batteries: a minireview. Funct. Mater. Lett., 2019, 12(5), 1930004. doi:10.1142/s1793604719300044http://dx.doi.org/10.1142/s1793604719300044
Shen Y. L.; Wang Y. J.; Miao Y. C.; Li Q. A.; Zhao X. Y.; Shen X. D. Anion-incorporated Mg-ion solvation modulation enables fast magnesium storage kinetics of conversion-type cathode materials. Adv. Mater., 2023, 35(19), 2208289. doi:10.1002/adma.202208289http://dx.doi.org/10.1002/adma.202208289
Shen Y. L.; Wang Y. J.; Miao Y. C.; Yang M.; Zhao X. Y.; Shen X. D. High-energy interlayer-expanded copper sulfide cathode material in non-corrosive electrolyte for rechargeable magnesium batteries. Adv. Mater., 2020, 32(4), e1905524. doi:10.1002/adma.201905524http://dx.doi.org/10.1002/adma.201905524
Xue M.; Cao M. F.; Xu C. Y.; Xiao D. W.; Zhang X. G. EQCM investigation of a dual-doped polymer electrode for Li-ion batteries with improved reversible capacity. ACS Appl. Mater. Interfaces, 2022, 14(22), 25584-25591. doi:10.1021/acsami.2c06004http://dx.doi.org/10.1021/acsami.2c06004
Zhang H. N.; Ren M. X.; Jiang W.; Yao J.; Pan L. M.; Yang J. Hierarchical Sb2S3@m-Ti3C2Tx composite anode with enhanced Na-ion storage properties. J. Alloys Compd., 2021, 887, 161318. doi:10.1016/j.jallcom.2021.161318http://dx.doi.org/10.1016/j.jallcom.2021.161318
Yu G. X.; Wang Y. P.; Li K.; Chen D. M.; Qin L. G.; Xu H.; Chen J.; Zhang W.; Zhang P. G.; Sun Z. M. Solution-processable Li10GeP2S12 solid electrolyte for a composite electrode in all-solid-state lithium batteries. Sustainable Energy Fuels, 2021, 5(4), 1211-1221.
Pan L.; Sun S.; Yu G. X.; Liu X. X.; Feng S. F.; Zhang W.; Turgunov M.; Wang Y. P.; Sun Z. M. Stabilizing solid electrolyte/Li interface via polymer-in-salt artificial protection layer for high-rate and stable lithium metal batteries. Chem. Eng. J., 2022, 449, 137682. doi:10.1016/j.cej.2022.137682http://dx.doi.org/10.1016/j.cej.2022.137682
Yang M.; Chen R.; Shen Y. L.; Zhao X. Y.; Shen X. D. A high-energy aqueous manganese-metal hydride hybrid battery. Adv. Mater., 2020, 32(38), 2001106. doi:10.1002/adma.202001106http://dx.doi.org/10.1002/adma.202001106
Gwon H.; Hong J.; Kim H.; Seo D. H.; Jeon S.; Kang K. Recent progress on flexible lithium rechargeable batteries. Energy Environ. Sci., 2014, 7(2), 538-551. doi:10.1039/c3ee42927jhttp://dx.doi.org/10.1039/c3ee42927j
Zhou G. M.; Li F.; Cheng H. M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci., 2014, 7(4), 1307-1338. doi:10.1039/c3ee43182ghttp://dx.doi.org/10.1039/c3ee43182g
Cheng J. L.; Gu G. F.; Ni W.; Guan Q.; Li Y. C.; Wang B. Graphene oxide hydrogel as a restricted-area nanoreactor for synthesis of 3D graphene-supported ultrafine TiO2 nanorod nanocomposites for high-rate lithium-ion battery anodes. Nanotechnology, 2017, 28(30), 305401. doi:10.1088/1361-6528/aa77c6http://dx.doi.org/10.1088/1361-6528/aa77c6
Liu Q. C.; Xu J. J.; Xu D.; Zhang X. B. Flexible lithium-oxygen battery based on a recoverable cathode. Nat. Commun., 2015, 6, 7892. doi:10.1038/ncomms8892http://dx.doi.org/10.1038/ncomms8892
Wu H.; Yu G. H.; Pan L. J.; Liu N.; McDowell M. T.; Bao Z. N.; Cui Y. Stable Li-ion battery anodes by in situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun., 2013, 4, 1943. doi:10.1038/ncomms2941http://dx.doi.org/10.1038/ncomms2941
Liu B. R.; Soares P.; Checkles C.; Zhao Y.; Yu G. H. Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes. Nano Lett., 2013, 13(7), 3414-3419. doi:10.1021/nl401880vhttp://dx.doi.org/10.1021/nl401880v
Zhang M.; Wang Y.; Jia M. Q. Three-dimensional reduced graphene oxides hydrogel anchored with ultrafine CoO nanoparticles as anode for lithium ion batteries. Electrochim. Acta, 2014, 129, 425-432. doi:10.1016/j.electacta.2014.02.097http://dx.doi.org/10.1016/j.electacta.2014.02.097
Liu J.; Zhang Q.; Wu Z. Y.; Wu J. H.; Li J. T.; Huang L.; Sun S. G. A high-performance alginate hydrogel binder for the Si/C anode of a Li-ion battery. Chem. Commun., 2014, 50(48), 6386-6389. doi:10.1039/c4cc00081ahttp://dx.doi.org/10.1039/c4cc00081a
Chen Z.; To J. W. F.; Wang C.; Lu Z. D.; Liu N.; Chortos A.; Pan L. J.; Wei F.; Cui Y.; Bao Z. N. A three-dimensionally interconnected carbon nanotube-conducting polymer hydrogel network for high-performance flexible battery electrodes. Adv. Energy Mater., 2014, 4(12), 1400207. doi:10.1002/aenm.201400207http://dx.doi.org/10.1002/aenm.201400207
Zhou T.; Gao X. P.; Dong B.; Sun N.; Zheng L. Q. Poly(ionic liquid) hydrogels exhibiting superior mechanical and electrochemical properties as flexible electrolytes. J. Mater. Chem. A, 2016, 4(3), 1112-1118. doi:10.1039/c5ta08166ahttp://dx.doi.org/10.1039/c5ta08166a
Bai X. J.; Yu Y. Y.; Kung H. H.; Wang B.; Jiang J. M. Si@SiOx/graphene hydrogel composite anode for lithium-ion battery. J. Power Sources, 2016, 306, 42-48. doi:10.1016/j.jpowsour.2015.11.102http://dx.doi.org/10.1016/j.jpowsour.2015.11.102
Lyu F. C.; Yu S. C.; Li M. C.; Wang Z. Y.; Nan B.; Wu S. F.; Cao L. J.; Sun Z. F.; Yang M. Y.; Wang W. X.; Shang C. Q.; Lu Z. G. Supramolecular hydrogel directed self-assembly of C- and N-doped hollow CuO as high-performance anode materials for Li-ion batteries. Chem. Commun., 2017, 53(13), 2138-2141. doi:10.1039/c6cc09702bhttp://dx.doi.org/10.1039/c6cc09702b
She Z. M.; Uceda M.; Pope M. A. Encapsulating a responsive hydrogel core for void space modulation in high-stability graphene-wrapped silicon anodes. ACS Appl. Mater. Interfaces, 2022, 14(8), 10363-10372. doi:10.1021/acsami.1c23356http://dx.doi.org/10.1021/acsami.1c23356
Bruce P.; Scrosati B.; Tarascon J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed., 2008, 47(16), 2930-2946. doi:10.1002/anie.200702505http://dx.doi.org/10.1002/anie.200702505
Cheng F. Y.; Liang J.; Tao Z. L.; Chen J. Functional materials for rechargeable batteries. Adv. Mater., 2011, 23(15), 1695-1715. doi:10.1002/adma.201003587http://dx.doi.org/10.1002/adma.201003587
Xia H.; Xu G.; Cao X.; Miao C. Y.; Zhang H. N.; Chen P. Y.; Zhou Y.; Zhang W.; Sun Z. M. Single-ion-conducting hydrogel electrolytes based on slide-ring pseudo-polyrotaxane for ultralong-cycling flexible zinc-ion batteries. Adv. Mater., 2023, 35(36), e2301996. doi:10.1002/adma.202301996http://dx.doi.org/10.1002/adma.202301996
0
浏览量
604
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构