浏览全部资源
扫码关注微信
1.贵州大学材料与冶金学院 贵阳 550025
2.科之杰新材料集团(贵州)有限公司 黔南布依族苗族自治州 551200
E-mail: hbxie@gzu.edu.cn
纸质出版日期:2024-03-20,
网络出版日期:2024-01-18,
收稿日期:2023-09-27,
录用日期:2023-12-05
移动端阅览
李合邦, 郭元龙, 邓磊, 陈文红, 吕昌伟, 谢海波. 一种丙磺酸木质素醚的合成及混凝土减水性能研究. 高分子学报, 2024, 55(3), 349-358
Li, H. B.; Guo ,Y. L.; Deng, L.; Chen, W. H.; Lv, C. W.; Xie, H. B. The study of a novel propanesulfonate lignin ether with good water-reducing performance in concrete. Acta Polymerica Sinica, 2024, 55(3), 349-358
李合邦, 郭元龙, 邓磊, 陈文红, 吕昌伟, 谢海波. 一种丙磺酸木质素醚的合成及混凝土减水性能研究. 高分子学报, 2024, 55(3), 349-358 DOI: 10.11777/j.issn1000-3304.2023.23239.
Li, H. B.; Guo ,Y. L.; Deng, L.; Chen, W. H.; Lv, C. W.; Xie, H. B. The study of a novel propanesulfonate lignin ether with good water-reducing performance in concrete. Acta Polymerica Sinica, 2024, 55(3), 349-358 DOI: 10.11777/j.issn1000-3304.2023.23239.
通过木质素磺酸钙(LC)与1
3-丙磺酸内酯(PS)在NaOH的催化下制备丙磺酸木质素醚 (PSLC) 高效减水剂,并系统地研究了投料比、反应温度、反应时间对产物净浆流动度的影响. 结果表明,当
m
(PS):
m
(LC) = 1.27:1、反应温度为80 ℃、反应时间为24 h时,在水灰比为0.29的条件下,PSLC5的水泥净浆流动度为(250±1) mm. 采用核磁共振波谱(NMR)、傅里叶变换红外光谱(FTIR)、凝胶渗透色谱(GPC)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)及热重分析(TGA)系统研究了PSLC的结构与热性能. 还探索了其水泥净浆流动度、坍落度、抗压强度、减水率,均优于商用萘系N06减水剂. PSLC优异的减水效果主要是由于其吸附在水泥颗粒表面上有较高的静电斥力.
Concrete admixture is one of the important components of concrete. As a kind of concrete admixture
the main function of water reducing agent is to reduce the water consumption of concrete without affecting its workability. Lignosulfonate superplasticizer
an environmentally friendly product
is prepared from pulp waste liquid as raw material with a simple production process. In this work
the novel type of propanesulfonate lignin ether (PSLC) superplasticizer was prepared by reaction of 1
3-propyl sulfonate (PS) and calcium lignosulfonate (LC) under NaOH catalyst. The effects of monomer feeding ratio
reaction temperature and reaction time on the fluidity of cement slurry were systematically studied. PSLC5 sample showed the fluidity of cement slurry of (250±1) mm with water cement ratio of 0.29 when synthesis condition was
m
(PS):
m
(LC) = 1.27:1 at 80 ℃ for 24 h
which was significantly better than that of raw LC (less than 80 mm). The structure and thermal properties of PSLC were characterized systematically through nuclear magnetic resonance spectroscopy (
1
H-NMR)
Fourier transform infrared spectroscopy (FTIR)
gel permeation chromatography (GPC)
X-ray photoelectron spectroscopy (XPS)
scanning electron microscopy (SEM) and thermo-gravimetric analysis (TGA). When the water cement ratio was 0.29
the fluidity of PSLC5 cement slurry was (250±1) mm better than that of N06 ((197±1) mm). After 60 min of static settling
the damage of PSLC5's flowability was only 3.2%
while N06 almost solidified without flowing. In order to achieve the same slump ((215±5) mm) and spread ((600±5) mm) of the concrete
the demand for PSLC5 was much less than for N06. The compressive strength of PSLC5 concrete was 22.3-43.8 MPa
which was higher than that of N06 at 3 days
7 days
28 days
respectively. And the water reducing rate of PSLC5 was 13%
higher than N06's 9.3%. In conclusion
PSLC5 exhibits better performance in concrete water reduction compared to N06. The excellent water reducing effect of PSLC is mainly due to the high electrostatic repulsion generated during absorption on the surface of cement particles.
木质素磺酸钙13-丙磺酸内酯高效减水剂静电斥力
Calcium lignosulphonate13-Propyl sulfonateSuperplasticizerElectrostatic repulsion
Kim G. M.; Nam I. W.; Yoon H. N.; Lee H. K. Effect of superplasticizer type and siliceous materials on the dispersion of carbon nanotube in cementitious composites. Compos. Struct., 2018, 185, 264-272. doi:10.1016/j.compstruct.2017.11.011http://dx.doi.org/10.1016/j.compstruct.2017.11.011
Johnson A. T.; Sosa D.; Arredondo R.; Li H. W.; Yuan Z. S.; Xu C. C. Production of bio-based concrete water reducers from renewable resources: a review. Biofuels Bioprod. Biorefin., 2023, 17(5), 1425-1444. doi:10.1002/bbb.2501http://dx.doi.org/10.1002/bbb.2501
韩松, 阎培渝. 硫酸盐对萘系减水剂与水泥相容性的影响. 硅酸盐学报, 2010, 38(9), 1765-1770.
Zheng T.; Zheng D. F.; Qiu X. Q.; Yang D. J.; Fan L.; Zheng J. M. A novel branched claw-shape lignin-based polycarboxylate superplasticizer: preparation, performance and mechanism. Cem. Concr. Res., 2019, 119, 89-101. doi:10.1016/j.cemconres.2019.03.007http://dx.doi.org/10.1016/j.cemconres.2019.03.007
Ma S. P.; Ding Q. J.; Zhou F.; Zhu H. X. Synthesis and characterization of lignin grafting modification-based aliphatic superplasticizer. J. Wuhan Univ. Technol., 2018, 33(3), 661-668. doi:10.1007/s11595-018-1875-zhttp://dx.doi.org/10.1007/s11595-018-1875-z
Kamali M.; Gameiro T.; Costa M. E. V.; Capela I. Anaerobic digestion of pulp and paper mill wastes-an overview of the developments and improvement opportunities. Chem. Eng. J., 2016, 298, 162-182. doi:10.1016/j.cej.2016.03.119http://dx.doi.org/10.1016/j.cej.2016.03.119
Naseem A.; Tabasum S.; Zia K. M.; Zuber M.; Ali M.; Noreen A. Lignin-derivatives based polymers, blends and composites: a review. Int. J. Biol. Macromol., 2016, 93, 296-313. doi:10.1016/j.ijbiomac.2016.08.030http://dx.doi.org/10.1016/j.ijbiomac.2016.08.030
王锦之, 王文军, 何明, 李本刚, 朱丽珺, 罗振扬. 木质素磺酸钠与聚羧酸减水剂复配研究. 林产化学与工业, 2016, 36(4): 41-48. doi:10.3969/j.issn.0253-2417.2016.04.006http://dx.doi.org/10.3969/j.issn.0253-2417.2016.04.006
Ouyang X. P.; Qiu X. Q.; Chen P. Physicochemical characterization of calcium lignosulfonate—a potentially useful water reducer. Colloids Surf. A, 2006, 282-283, 489-497. doi:10.1016/j.colsurfa.2005.12.020http://dx.doi.org/10.1016/j.colsurfa.2005.12.020
王哲, 李忠正, 高鸿海. 改性木质素磺酸钠的混凝土减水性能及其结构特性. 中华纸业, 2007, 28(11), 63-65. doi:10.3969/j.issn.1007-9211.2007.11.018http://dx.doi.org/10.3969/j.issn.1007-9211.2007.11.018
张致发, 邓国华, 叶跃华, 卢卓敏, 韦汉道. 木素磺酸盐和丙烯酸电化学接枝共聚反应的研究. 纤维素科学与技术, 1998, 6(1), 55-62.
袁海晨, 郭艳玲, 王国房, 张冉冉. 磺化碱木素与甲基丙烯酸接枝共聚物制备研究. 煤炭科学技术, 2015, 43(4), 141-144. doi:10.13199/j.cnki.cst.2015.04.033http://dx.doi.org/10.13199/j.cnki.cst.2015.04.033
郭红霞, 李春生, 谭惠芬, 王群, 宋秀庆. 木质素磺酸钠的酚化改性及其环氧树脂的制备. 北京工业大学学报, 2012, 38(2): 300-304. doi:10.11936/bjutxb2012020300http://dx.doi.org/10.11936/bjutxb2012020300
Haile A.; Gelebo G. G.; Tesfaye T.; Mengie W.; Mebrate M. A.; Abuhay A.; Limeneh D. Y. Pulp and paper mill wastes: Utilizations and prospects for high value-added biomaterials. Bioresour. Bioprocess., 2021, 8(1), 1-22. doi:10.1186/s40643-021-00385-3http://dx.doi.org/10.1186/s40643-021-00385-3
Chen R. L.; Kokta B. V.; Daneault C.; Valade J. L. Some water-soluble copolymers from lignin. J. Appl. Polym. Sci., 1986, 32(5), 4815-4826. doi:10.1002/app.1986.070320504http://dx.doi.org/10.1002/app.1986.070320504
刘娟, 唐道奎, 肖亮. 1,3-丙磺酸内酯的合成工艺研究. 广东化工, 2016, 43(16), 55-57. doi:10.3969/j.issn.1007-1865.2016.16.026http://dx.doi.org/10.3969/j.issn.1007-1865.2016.16.026
Qiu X. Q.; Zeng W. M.; Yu W.; Xue Y. Y.; Pang Y. X.; Li X. Y.; Li Y. A. Alkyl chain cross-linked sulfobutylated lignosulfonate: A highly efficient dispersant for carbendazim suspension concentrate. ACS Sustain. Chem. Eng., 2015, 3(7), 1551-1557. doi:10.1021/acssuschemeng.5b00252http://dx.doi.org/10.1021/acssuschemeng.5b00252
曾伟媚, 李远, 李昱达, 邓永红, 邱学青. 烷基桥联丁基磺酸磺化木质素的制备及其在分散碳纳米管中的应用. 化工学报, 2016, 67(1), 331-338.
Zhang H.; Fu S. Y.; Chen Y. C. Basic understanding of the color distinction of lignin and the proper selection of lignin in color-depended utilizations. Int. J. Biol. Macromol., 2020, 147, 607-615. doi:10.1016/j.ijbiomac.2020.01.105http://dx.doi.org/10.1016/j.ijbiomac.2020.01.105
Tortora M.; Cavalieri F.; Mosesso P.; Ciaffardini F.; Melone F.; Crestini C. Ultrasound driven assembly of lignin into microcapsules for storage and delivery of hydrophobic molecules. Biomacromolecules, 2014, 15(5), 1634-1643. doi:10.1021/bm500015jhttp://dx.doi.org/10.1021/bm500015j
谢祥明, 林建伟, 邱学青. 木钙的改性与水工绿色高性能混凝土(GHPC)的探索. 武汉大学学报(工学版), 2001, 34(5), 92-95. doi:10.3969/j.issn.1671-8844.2001.05.021http://dx.doi.org/10.3969/j.issn.1671-8844.2001.05.021
郭睿, 宋博, 马兰, 土瑞香, 郭煜, 王映月, 李云鹏. 木质素的磺甲基化改性及性能测试. 应用化工, 2017, 46(12), 2374-2377. doi:10.3969/j.issn.1671-3206.2017.12.022http://dx.doi.org/10.3969/j.issn.1671-3206.2017.12.022
Guo Y. L.; Li L.; Guo G.; Pei M.; Zhang L. H.; Xie H. B.; Sun H.; Zheng Q. Synthesis of a fully biobased cellulose-3-(2-hydroxyphenyl) propionate ester with antioxidant activity and UV-resistant properties by the DBU/CO2/DMSO solvent system. Green Chem., 2021, 23(6), 2352-2361. doi:10.1039/d0gc03478ahttp://dx.doi.org/10.1039/d0gc03478a
张新兰. 混凝土外加剂减水率的快速检测方法探讨. 山西建筑, 2016, 42(3), 109-110. doi:10.3969/j.issn.1009-6825.2016.03.060http://dx.doi.org/10.3969/j.issn.1009-6825.2016.03.060
Cheng B. J.; Feng H.; Armia E.; Guo H. L.; Zhang S. W.; Zhang H. J. Effects of sodium tripolyphosphate addition on the dispersion and hydration of pure calcium aluminate cement. Materials, 2023, 16(8), 3141. doi:10.3390/ma16083141http://dx.doi.org/10.3390/ma16083141
0
浏览量
243
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构