浏览全部资源
扫码关注微信
1.包头稀土研究院 白云鄂博稀土资源研究与综合利用全国重点实验室 包头 014030
2.浙江大学光电科学与工程学院 极端光学技术与仪器全国重点实验室 杭州 310027
E-mail: bbxu2019@zju.edu.cn
纸质出版日期:2024-03-20,
网络出版日期:2024-01-16,
收稿日期:2023-10-01,
录用日期:2023-11-15
移动端阅览
窦青青, 李子成, 满涛, 许贝贝. 四硫富瓦烯-苯均四酸二亚酰胺有机共晶的光电磁耦合特性. 高分子学报, 2024, 55(3), 320-327
Dou, Q. Q.; Li, Z. C.; Man, T.; Xu, B. B. Opto-electric-magnetic coupling properties of tetrathiafulvalene-pyromelliticdiimide organic cocrystals. Acta Polymerica Sinica, 2024, 55(3), 320-327
窦青青, 李子成, 满涛, 许贝贝. 四硫富瓦烯-苯均四酸二亚酰胺有机共晶的光电磁耦合特性. 高分子学报, 2024, 55(3), 320-327 DOI: 10.11777/j.issn1000-3304.2023.23240.
Dou, Q. Q.; Li, Z. C.; Man, T.; Xu, B. B. Opto-electric-magnetic coupling properties of tetrathiafulvalene-pyromelliticdiimide organic cocrystals. Acta Polymerica Sinica, 2024, 55(3), 320-327 DOI: 10.11777/j.issn1000-3304.2023.23240.
利用四硫富瓦烯(TTF)给体和苯均四酸二亚酰胺(PMDI)受体,发展了一种新型有机共晶TTF-PMDI. 该共晶给受体分子间具有强电荷转移作用,并表现出铁电性和磁电耦合效应,包括磁电容效应和磁场诱导铁电极化的变化,光刺激下,该共晶还表现出电容和铁电极化变化,详细讨论了这些效应产生的机制,并探讨了三线态电荷转移态对电容和铁电极化变化的影响. 本文的研究结果将促进多功能共晶的材料和器件的发展,为多场感知领域的应用提供了一种新的可能.
The rapid development of intelligent robots raises increasing demand of multifunctional sensing materials and devices. However
most of currently developed materials only have two-field coupling effect. They lack multi-modal sensing ability. This article proposes a new strategy to develop multi-field coupling materials through the control of inter-molecular charge transfer interaction. Here
centimeter long organic co-crystal tetrathiafulvalene (TTF)-pyromelliticdiimide (PMDI) with opto-electric-magnetic coupling effect is developed by saturated precipitation method. It has room-temperature ferroelectric effect with a remnant polarization of 4 µC/cm
2
. It also shows room-temperature magneto-electric coupling effect
including magnetic field-induced capacitance change of 1.5×10
-3
%/Oe and ferroelectric polarization change with magneto-electric coupling coefficient of 1.18 nC/(cm
2
·Oe). Moreover
this effect can be controlled by light stimuli. It is demonstrated that the relatively weaker inter-molecular charge transfer interaction than that of intra-molecular interaction makes the co-crystal more vulnerable to external stimuli than single component crystal. In addition
the intersystem crossing between singlet and triplet charge transfer state also induces magnetic-field effect and influences the electric dipoles related capacitance and polarization. All these factors lead to the generation of multiple freedom to tune the opto-electric-magnetic properties of the co-crystal. The results of this study will promote the development of multifunctional cocrystal materials and devices
and promote their applications for multifunctional sensing.
有机共晶光电磁耦合多场传感
Organic cocrystalOpto-electric-magneto couplingMulti-field sensing
Fiebig M.; Lottermoser T.; Meier D.; Trassin M. The evolution of multiferroics. Nat. Rev. Mater., 2016, 1, 16046. doi:10.1038/natrevmats.2016.46http://dx.doi.org/10.1038/natrevmats.2016.46
Ryu J.; Kang J. E.; Zhou Y.; Choi S. Y.; Yoon W. H.; Park D. S.; Choi J. J.; Hahn B. D.; Ahn C. W.; Kim J. W.; Kim Y. D.; Priya S.; Lee S. Y.; Jeong S.; Jeong D. Y. Ubiquitous magneto-mechano-electric generator. Energy Environ. Sci., 2015, 8(8), 2402-2408. doi:10.1039/c5ee00414dhttp://dx.doi.org/10.1039/c5ee00414d
Zhu Q. X.; Yang M. M.; Zheng M.; Zheng R. K.; Guo L. J.; Wang Y.; Zhang J. X.; Li X. M.; Luo H. S.; Li X. G. Ultrahigh tunability of room temperature electronic transport and ferromagnetism in dilute magnetic semiconductor and PMN-PT single-crystal-based field effect transistors via electric charge mediation. Adv. Funct. Mater., 2015, 25(7), 1111-1119. doi:10.1002/adfm.201403763http://dx.doi.org/10.1002/adfm.201403763
Annapureddy V.; Palneedi H.; Yoon W. H.; Park D. S.; Choi J. J.; Hahn B. D.; Ahn C. W.; Kim J. W.; Jeong D. Y.; Ryu J. A pT/√Hz sensitivity ac magnetic field sensor based on magnetoelectric composites using low-loss piezoelectric single crystals. Sens. Actuat. A, 2017, 260, 206-211. doi:10.1016/j.sna.2017.04.017http://dx.doi.org/10.1016/j.sna.2017.04.017
Chen A. T.; Wen Y.; Fang B.; Zhao Y. L.; Zhang Q.; Chang Y. S.; Li P. S.; Wu H.; Huang H. L.; Lu Y. L.; Zeng Z. M.; Cai J. W.; Han X. F.; Wu T.; Zhang X. X.; Zhao Y. G. Giant nonvolatile manipulation of magnetoresistance in magnetic tunnel junctions by electric fields via magnetoelectric coupling. Nat. Commun., 2019, 10, 243. doi:10.1038/s41467-018-08061-5http://dx.doi.org/10.1038/s41467-018-08061-5
Kosub T.; Kopte M.; Hühne R.; Appel P.; Shields B.; Maletinsky P.; Hübner R.; Liedke M. O.; Fassbender J.; Schmidt O. G.; Makarov D. Purely antiferromagnetic magnetoelectric random access memory. Nat. Commun., 2017, 8, 13985. doi:10.1038/ncomms13985http://dx.doi.org/10.1038/ncomms13985
Yan Y. K.; Geng L. D.; Tan Y. H.; Ma J. H.; Zhang L. J.; Sanghadasa M.; Ngo K.; Ghosh A. W.; Wang Y. U.; Priya S. Colossal tunability in high frequency magnetoelectric voltage tunable inductors. Nat. Commun., 2018, 9, 4998. doi:10.1038/s41467-018-07371-yhttp://dx.doi.org/10.1038/s41467-018-07371-y
Fetisov Y. K.; Srinivasan G. Electric field tuning characteristics of a ferrite-piezoelectric microwave resonator. Appl. Phys. Lett., 2006, 88(14), 143503. doi:10.1063/1.2191950http://dx.doi.org/10.1063/1.2191950
Cheng Y. X.; Peng B.; Hu Z. Q.; Zhou Z. Y.; Liu M. Recent development and status of magnetoelectric materials and devices. Phys. Lett. A, 2018, 382(41), 3018-3025. doi:10.1016/j.physleta.2018.07.014http://dx.doi.org/10.1016/j.physleta.2018.07.014
Nan T. X.; Lin H.; Gao Y.; Matyushov A.; Yu G. L.; Chen H. H.; Sun N.; Wei S. J.; Wang Z. G.; Li M. H.; Wang X. J.; Belkessam A.; Guo R. D.; Chen B.; Zhou J.; Qian Z. Y.; Hui Y.; Rinaldi M.; McConney M. E.; Howe B. M.; Hu Z. Q.; Jones J. G.; Brown G. J.; Sun N. X. Acoustically actuated ultra-compact NEMS magnetoelectric antennas. Nat. Commun., 2017, 8(1), 296. doi:10.1038/s41467-017-00343-8http://dx.doi.org/10.1038/s41467-017-00343-8
Shen J. X.; Shang D. S.; Chai Y. S.; Wang S. G.; Shen B. G.; Sun Y. Mimicking synaptic plasticity and neural network using memtranstors. Adv. Mater., 2018, 30(12), 1706717. doi:10.1002/adma.201706717http://dx.doi.org/10.1002/adma.201706717
Yue K.; Guduru R.; Hong J.; Liang P.; Nair M.; Khizroev S. Magneto-electric nano-particles for non-invasive brain stimulation. PLoS One, 2012, 7(9), e44040. doi:10.1371/journal.pone.0044040http://dx.doi.org/10.1371/journal.pone.0044040
Wu Y. Z.; Liu Y. W.; Zhou Y. L.; Man Q. K.; Hu C.; Asghar W.; Li F. L.; Yu Z.; Shang J. E.; Liu G.; Liao M. Y.; Li R. W. A skin-inspired tactile sensor for smart prosthetics. Sci. Robot., 2018, 3(22), eaat0429. doi:10.1126/scirobotics.aat0429http://dx.doi.org/10.1126/scirobotics.aat0429
Huang Y. J.; Wang Z. R.; Chen Z.; Zhang Q. C. Organic cocrystals: beyond electrical conductivities and field-effect transistors (FETs). Angew. Chem. Int. Ed., 2019, 58(29), 9696-9711. doi:10.1002/anie.201900501http://dx.doi.org/10.1002/anie.201900501
Goetz K. P.; Vermeulen D.; Payne M. E.; Kloc C.; McNeil L. E.; Jurchescu O. D. Charge-transfer complexes: new perspectives on an old class of compounds. J. Mater. Chem. C, 2014, 2(17), 3065-3076. doi:10.1039/c3tc32062fhttp://dx.doi.org/10.1039/c3tc32062f
Xu B. B.; Chakraborty H.; Yadav V. K.; Zhang Z. L.; Klein M. L.; Ren S. Q. Tunable two-dimensional interfacial coupling in molecular heterostructures. Nat. Commun., 2017, 8, 312. doi:10.1038/s41467-017-00390-1http://dx.doi.org/10.1038/s41467-017-00390-1
Xu B. B.; Li H. S.; Hall A.; Gao W. X.; Gong M. G.; Yuan G. L.; Grossman J.; Ren S. Q. All-polymeric control of nanoferronics. Sci. Adv., 2015, 1(11), e1501264. doi:10.1126/sciadv.1501264http://dx.doi.org/10.1126/sciadv.1501264
Lunkenheimer P.; Müller J.; Krohns S.; Schrettle F.; Loidl A.; Hartmann B.; Rommel R.; de Souza M.; Hotta C.; Schlueter J. A.; Lang M. Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole-driven magnetism. Nat. Mater., 2012, 11(9), 755-758. doi:10.1038/nmat3400http://dx.doi.org/10.1038/nmat3400
Xu B. B.; Chakraborty H.; Remsing R. C.; Klein M. L.; Ren S. Q. A free-standing molecular spin-charge converter for ubiquitous magnetic-energy harvesting and sensing. Adv. Mater., 2017, 29(8), 1605150. doi:10.1002/adma.201605150http://dx.doi.org/10.1002/adma.201605150
Wei M. M.; Song K. P.; Yang Y. Y.; Huang Q. K.; Tian Y. F.; Hao X. T.; Qin W. Organic multiferroic magnetoelastic complexes. Adv. Mater., 2020, 32(40), 2003293. doi:10.1002/adma.202003293http://dx.doi.org/10.1002/adma.202003293
Suda M.; Kawasugi Y.; Minari T.; Tsukagoshi K.; Kato R.; Yamamoto H. M. Strain-tunable superconducting field-effect transistor with an organic strongly-correlated electron system. Adv. Mater., 2014, 26(21), 3490-3495. doi:10.1002/adma.201305797http://dx.doi.org/10.1002/adma.201305797
Xu B. B.; Li H. S.; Li H. Q.; Wilson A. J.; Zhang L.; Chen K.; Willets K. A.; Ren F.; Grossman J. C.; Ren S. Q. Chemically driven interfacial coupling in charge-transfer mediated functional superstructures. Nano Lett., 2016, 16(4), 2851-2859. doi:10.1021/acs.nanolett.6b00712http://dx.doi.org/10.1021/acs.nanolett.6b00712
Qin Z. S.; Gao C.; Dong H. L.; Hu W. P. Organic semiconductor single-crystal light-emitting transistors. Adv. Opt. Mater., 2023, 11(13), 2201644. doi:10.1002/adom.202201644http://dx.doi.org/10.1002/adom.202201644
Chen S. A.; Zeng X. C. Design of ferroelectric organic molecular crystals with ultrahigh polarization. J. Am. Chem. Soc., 2014, 136(17), 6428-6436. doi:10.1021/ja5017393http://dx.doi.org/10.1021/ja5017393
Qin W.; Jasion D.; Chen X. M.; Wuttig M.; Ren S. Q. Charge-transfer magnetoelectrics of polymeric multiferroics. ACS Nano, 2014, 8(4), 3671-3677. doi:10.1021/nn500323jhttp://dx.doi.org/10.1021/nn500323j
Xu B. B.; Li Z.; Chang S. Q.; Li C. N.; Ren S. Q. Crystallization-mediated magnetoelectric response in two-dimensional molecular charge transfer crystals. ACS Appl. Electron. Mater., 2019, 1(9), 1735-1739. doi:10.1021/acsaelm.9b00337http://dx.doi.org/10.1021/acsaelm.9b00337
Xu B. B.; Luo Z. P.; Wilson A. J.; Chen K.; Gao W. X.; Yuan G. L.; Chopra H. D.; Chen X.; Willets K. A.; Dauter Z.; Ren S. Q. Multifunctional charge-transfer single crystals through supramolecular assembly. Adv. Mater., 2016, 28(26), 5322-5329. doi:10.1002/adma.201600383http://dx.doi.org/10.1002/adma.201600383
Hu B.; Yan L. A.; Shao M. Magnetic-field effects in organic semiconducting materials and devices. Adv. Mater., 2009, 21(14-15), 1500-1516. doi:10.1002/adma.200802386http://dx.doi.org/10.1002/adma.200802386
He L.; Li M. X.; Urbas A.; Hu B. Optically tunable magneto-capacitance phenomenon in organic semiconducting materials developed by electrical polarization of intermolecular charge-transfer states. Adv. Mater., 2014, 26(23), 3956-3961. doi:10.1002/adma.201305965http://dx.doi.org/10.1002/adma.201305965
0
浏览量
297
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构