浏览全部资源
扫码关注微信
1.贵州大学材料与冶金学院 贵阳 550025
2.科之杰新材料集团(贵州)有限公司 黔南布依族苗族自治州 551200
E-mail: hbxie@gzu.edu.cn
纸质出版日期:2024-06-20,
网络出版日期:2024-03-07,
收稿日期:2023-11-11,
录用日期:2023-12-26
移动端阅览
周仕兵, 郭元龙, 裴敏, 邓磊, 陈文红, 吕昌伟, 谢海波. 一锅法合成纤维素乙酰丙酸混合酯. 高分子学报, 2024, 55(6), 761-769
Zhou, S. B.; Guo, Y. L.; Pei, M.; Deng, L.; Chen, W. H.; Lv, C. W.; Xie, H. B. Cellulose levulinate and its mixed esters: one pot synthesis and properties. Acta Polymerica Sinica, 2024, 55(6), 761-769
周仕兵, 郭元龙, 裴敏, 邓磊, 陈文红, 吕昌伟, 谢海波. 一锅法合成纤维素乙酰丙酸混合酯. 高分子学报, 2024, 55(6), 761-769 DOI: 10.11777/j.issn1000-3304.2023.23260.
Zhou, S. B.; Guo, Y. L.; Pei, M.; Deng, L.; Chen, W. H.; Lv, C. W.; Xie, H. B. Cellulose levulinate and its mixed esters: one pot synthesis and properties. Acta Polymerica Sinica, 2024, 55(6), 761-769 DOI: 10.11777/j.issn1000-3304.2023.23260.
在1
8-二氮杂二环十一碳-7-烯/二甲基亚砜/二氧化碳(DBU/DMSO/CO
2
)溶剂体系中,有机碱DBU既作为溶剂组分又作为催化剂可以实现纤维素的-OH与
α
-当归内酯(
α
-AL)的转酯化反应,制备高取代度、水溶性的纤维素乙酰丙酸酯. 本文中以纤维素和
α
-AL、酸酐为原料,在该溶解体系中通过一锅法制备了纤维素乙酰丙酸混合酯. 并系统地研究了反应时间、温度和
α
-AL/酸酐/-OH的摩尔比对单体转化率和取代度(DS)的影响. 结果表明,在80 ℃下反应3 h,可以获得DS为3.0的纤维素乙酰丙酸混合酯. 采用核磁谱图、傅里叶红外光谱、热重分析及示差扫描量热测试等研究纤维素乙酰丙酸混合酯的结构及热性能,结果表明材料具有良好的热稳定性,其玻璃化转变温度随着侧链烷基延长而降低. 不仅如此,纤维素乙酰丙酸混合酯薄膜显示出良好的力学性能,纤维素乙酰丙酸乙酸酯(CLE-A)薄膜最大拉伸强度可达32.02 MPa,纤维素乙酰丙酸丁酸酯(CLE-B)薄膜断裂伸长率达到65.83%.
Due to the depletion of petroleum resources and the development of the emerging bioeconomy
the conversion of biomass into renewable chemicals for the preparation of advanced materials is believed to reduce modern society's dependence on fossil resources. The abundant hydroxyl groups on cellulose make it easy to modify
and it has the advantages of wide source
renewable
biodegradable and excellent bio-co MPatibility. Therefore
the preparation of novel cellulose-based functional materials based on cellulose skeleton has broad application prospects. In 1
8-diazabicyclo[5.4.0
]
undec-7-ene/dimethyl sulfoxide/CO
2
(DBU/DMSO/CO
2
) solvent system
the transesterification between the hydroxyl groups of cellulose and
α
-angelicolactone (
α
-AL) were processed catalyzed by DBU. During this solvent system
the organic base DBU acted as solvent component and catalyst
the cellulose levulinate with high substitution degree (DS) and water solubility could be prepared successfully. In this study
cellulose
α
-AL and acid anhydride are used as raw materials to prepare cellulose levulinic acid mixed ester by one-pot method in the same solvent system. The effects of reaction time
temperature and molar ratio of
α
-AL/anhydride/-OH on monomer conversion
rate and DS were studied systematically. The results showed that cellulose levulinic acid mixed ester with DS of 3.0 could be obtained after reaction at 80 ℃ for 3 h. The structure and thermal properties of cellulose levulinic acid mixed ester were studied by magnetic resonance spectroscopy (
1
H-NMR
13
C-NMR)
Fourier transform infrared spectroscopy (FTIR)
X-ray diffraction (XRD)
differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). And the relationship between structure and properties of cellulose levulinic acid mixed ester was studied in depth. The results showed that the material had good thermal stability and the glass transition temperature decreased with the extension of side chain alkyl. The mechanical properties of cellulose levulinic acid mixed ester films were investigated by stress-strain experiments. And the results showed that the maximum tensile strength of the CLE-A film reached 32.02 MPa
the elongation at break of CLE-B was 65.83% showing strong and tough characteristics.
纤维素纤维素衍生物纤维素乙酰丙酸酯纤维素乙酰丙酸混合酯
CelluloseCellulose derivativeCellulose levulinate esterMixed cellulose levulinate esters
Zhu Y. Q.; Romain C.; Williams C. K. Sustainable polymers from renewable resources. Nature, 2016, 540, 354-362. doi:10.1038/nature21001http://dx.doi.org/10.1038/nature21001
Iliopoulou E. F.; Triantafyllidis K. S.; Lappas A. A. Overview of catalytic upgrading of biomass pyrolysis vapors toward the production of fuels and high-value chemicals. Wires Energy Environ., 2019, 8(1), e322. doi:10.1002/wene.322http://dx.doi.org/10.1002/wene.322
Huber T.; Müssig J.; Curnow O.; Pang S. S.; Bickerton S.; Staiger M. P. A critical review of all-cellulose composites. J. Mater. Sci., 2012, 47(3), 1171-1186. doi:10.1007/s10853-011-5774-3http://dx.doi.org/10.1007/s10853-011-5774-3
Prusov A. N.; Prusova S. M.; Zakharov A. G.; Radugin M. V.; Bazanov A. V. Green synthesis of nanoparticles of copper and its oxides in a nanoporous carbon matrix. Fuller. Nanotub. Carbon Nanostruct., 2019, 27(12), 967-977. doi:10.1080/1536383x.2019.1679780http://dx.doi.org/10.1080/1536383x.2019.1679780
Queiroz B. G.; Ciol H.; Inada N. M.; Frollini E. Hydrogel from all in all lignocellulosic sisal fibers macromolecular components. Int. J. Biol. Macromol., 2021, 181, 978-989. doi:10.1016/j.ijbiomac.2021.04.088http://dx.doi.org/10.1016/j.ijbiomac.2021.04.088
Ramos L. A.; Assaf J. M.; El Seoud O. A.; Frollini E. Influence of the supramolecular structure and physicochemical properties of cellulose on its dissolution in a lithium chloride/N,N-dimethylacetamide solvent system. Biomacromolecules, 2005, 6(5), 2638-2647. doi:10.1021/bm0400776http://dx.doi.org/10.1021/bm0400776
Hu R. M.; Fan T.; Yang J. L.; Xiao H.; Liu Y. P.; Lu M. Ultrasound and microwave technology for flake-TiO2 growth and immobilization on cotton fabrics in micro-dissolution process. Mater. Chem. Phys., 2020, 249, 123036. doi:10.1016/j.matchemphys.2020.123036http://dx.doi.org/10.1016/j.matchemphys.2020.123036
Ibrahim F.; Moniruzzaman M.; Yusup S.; Uemura Y. Dissolution of cellulose with ionic liquid in pressurized cell. J. Mol. Liq., 2015, 211, 370-372. doi:10.1016/j.molliq.2015.07.041http://dx.doi.org/10.1016/j.molliq.2015.07.041
Egal M.; Budtova T.; Navard P. The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions. Cellulose, 2008, 15(3), 361-370. doi:10.1007/s10570-007-9185-1http://dx.doi.org/10.1007/s10570-007-9185-1
Wang Y. G.; Wang X. J.; Xie Y. J.; Zhang K. Functional nanomaterials through esterification of cellulose: a review of chemistry and application. Cellulose, 2018, 25(7), 3703-3731. doi:10.1007/s10570-018-1830-3http://dx.doi.org/10.1007/s10570-018-1830-3
You J. X.; Zhang X.; Mi Q. Y.; Zhang J. M.; Wu J.; Zhang J. Mild, rapid and efficient etherification of cellulose. Cellulose, 2022, 29(18), 9583-9596. doi:10.1007/s10570-022-04879-xhttp://dx.doi.org/10.1007/s10570-022-04879-x
Gao C. Z.; Liu S.; Edgar K. J. Regioselective chlorination of cellulose esters by methanesulfonyl chloride. Carbohydr. Polym., 2018, 193, 108-118. doi:10.1016/j.carbpol.2018.03.093http://dx.doi.org/10.1016/j.carbpol.2018.03.093
Kasai W.; Morooka T.; Ek M. Mechanical properties of films made from dialcohol cellulose prepared by homogeneous periodate oxidation. Cellulose, 2014, 21(1), 769-776. doi:10.1007/s10570-013-0153-7http://dx.doi.org/10.1007/s10570-013-0153-7
Gupta K. C.; Khandekar K. Temperature-responsive cellulose by ceric(IV) ion-initiated graft copolymerization of N-isopropylacrylamide. Biomacromolecules, 2003, 4(3), 758-765. doi:10.1021/bm020135shttp://dx.doi.org/10.1021/bm020135s
Lu S.; Li J. L.; Liu F.; Chen M. L.; Na H. N.; Zhu J. Impact of DBU on the synthesis of cellulose-graft-poly(l-lactide) copolymer in CO2 switchable solvent with different grafting strategies. Polymer, 2021, 229, 124020. doi:10.1016/j.polymer.2021.124020http://dx.doi.org/10.1016/j.polymer.2021.124020
Qiu X. Y.; Hu S. W. "Smart" materials based on cellulose: a review of the preparations, properties, and applications. Materials, 2013, 6(3), 738-781. doi:10.3390/ma6030738http://dx.doi.org/10.3390/ma6030738
McCormick C. L.; Callais P. A. Derivatization of cellulose in lithium chloride and N-N-dimethylacetamide solutions. Polymer, 1987, 28(13), 2317-2323. doi:10.1016/0032-3861(87)90393-4http://dx.doi.org/10.1016/0032-3861(87)90393-4
Cheng Y. H.; Zhang X.; Yin C. C.; Zhang J. M.; Yu J.; Zhang J. Immobilization of ionic liquids with a new cellulose ester containing imidazolium cation for high-performance CO2 separation membranes. Macromol. Rapid Commun., 2021, 42(3), 2000494. doi:10.1002/marc.202000494http://dx.doi.org/10.1002/marc.202000494
Yu G. M.; Teng Y.; Lai W. D.; Yin C. Y. The preparation and study of cellulose carbamates and their regenerated membranes. Int. J. Biol. Macromol., 2016, 93, 1155-1160. doi:10.1016/j.ijbiomac.2016.09.081http://dx.doi.org/10.1016/j.ijbiomac.2016.09.081
Xie H. B.; Yu X.; Yang Y. L.; Zhao Z. K. Capturing CO2 for cellulose dissolution. Green Chem., 2014, 16(5), 2422-2427. doi:10.1039/c3gc42395fhttp://dx.doi.org/10.1039/c3gc42395f
Zhang, H.; Wu, J.; Zhang, J.; He, J. S. 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules, 2005, 38(20), 8272-8277. doi:10.1021/ma0505676http://dx.doi.org/10.1021/ma0505676
Yang Y. L.; Song L. C.; Peng C.; Liu E. H.; Xie H. B. Activating cellulose via its reversible reaction with CO2 in the presence of 1,8-diazabicyclo [5.4.0] undec-7-ene for the efficient synthesis of cellulose acetate. Green Chem., 2015, 17(5), 2758-2763. doi:10.1039/c5gc00115chttp://dx.doi.org/10.1039/c5gc00115c
Chen H. X.; Yang F. H.; Du J. H.; Xie H. B.; Zhang L. H.; Guo Y. L.; Xu Q. Q.; Zheng Q.; Li N. W.; Liu Y. Efficient transesterification reaction of cellulose with vinyl esters in DBU/DMSO/CO2 solvent system at low temperature. Cellulose, 2018, 25(12), 6935-6945. doi:10.1007/s10570-018-2078-7http://dx.doi.org/10.1007/s10570-018-2078-7
Chen Z. Y.; Zhang J. M.; Xiao P.; Tian W. G.; Zhang J. Novel thermoplastic cellulose esters containing bulky moieties and soft segments. ACS Sustain. Chem. Eng., 2018, 6(4), 4931-4939. doi:10.1021/acssuschemeng.7b04466http://dx.doi.org/10.1021/acssuschemeng.7b04466
Edgar K. J.; Arnold K. M.; Blount W. W.; Lawniczak J. E.; Lowman D. W. Synthesis and properties of cellulose acetoacetates. Macromolecules, 1995, 28(12), 4122-4128. doi:10.1021/ma00116a011http://dx.doi.org/10.1021/ma00116a011
Luan Y. H.; Wu J.; Zhan M. S.; Zhang J. M.; Zhang J.; He J. S. "One pot" homogeneous synthesis of thermoplastic cellulose acetate-graft-poly(l-lactide) copolymers from unmodified cellulose. Cellulose, 2013, 20(1), 327-337. doi:10.1007/s10570-012-9818-xhttp://dx.doi.org/10.1007/s10570-012-9818-x
Zhang J. M.; Chen W. W.; Feng Y.; Wu J.; Yu J.; He J. S.; Zhang J. Homogeneous esterification of cellulose in room temperature ionic liquids. Polym. Int., 2015, 64(8), 963-970. doi:10.1002/pi.4883http://dx.doi.org/10.1002/pi.4883
Lima C. G. S.; Monteiro J. L.; de Melo Lima T.; Weber Paixão M.; Corrêa A. G. Angelica lactones: from biomass-derived platform chemicals to value-added products. ChemSusChem, 2018, 11(1), 25-47. doi:10.1002/cssc.201701469http://dx.doi.org/10.1002/cssc.201701469
Williams D. B. G.; Mason J. M.; Tristram C. J.; Hinkley S. F. R. Cellulose as a source of water dispersible renewable film-forming materials. Macromolecules, 2015, 48(23), 8497-8508. doi:10.1021/acs.macromol.5b02131http://dx.doi.org/10.1021/acs.macromol.5b02131
Tristram C. J.; Mason J. M.; Williams D. B. G.; Hinkley S. F. R. Doubly renewable cellulose polymer for water-based coatings. ChemSusChem, 2015, 8(1), 63-66. doi:10.1002/cssc.201402590http://dx.doi.org/10.1002/cssc.201402590
Hinner L. P.; Wissner J. L.; Beurer A.; Nebel B. A.; Hauer B. Homogeneous vinyl ester-based synthesis of different cellulose derivatives in 1-ethyl-3-methyl-imidazolium acetate. Green Chem., 2016, 18(22), 6099-6107. doi:10.1039/c6gc02005dhttp://dx.doi.org/10.1039/c6gc02005d
Pei M.; Peng X. W.; Shen Y. Q.; Yang Y. L.; Guo Y. L.; Zheng Q.; Xie H. B.; Sun H. Synthesis of water-soluble, fully biobased cellulose levulinate esters through the reaction of cellulose and alpha-angelica lactone in a DBU/CO2/DMSO solvent system. Green Chem., 2020, 22(3), 707-717. doi:10.1039/c9gc03149ahttp://dx.doi.org/10.1039/c9gc03149a
Liu R.; Zhang J.; Sun S.; Bian Y. H.; Hu Y. H. Dissolution and recovery of cellulose from pine wood bits in ionic liquids and a co-solvent component mixed system. J. Eng. Fibres. Fabr., 2019, 14, 155892501983844. doi:10.1177/1558925019838440http://dx.doi.org/10.1177/1558925019838440
He Y.; Zhu B.; Inoue Y. Hydrogen bonds in polymer blends. Prog. Polym. Sci., 2004, 29(10), 1021-1051. doi:10.1016/j.progpolymsci.2004.07.002http://dx.doi.org/10.1016/j.progpolymsci.2004.07.002
Zhou L. P.; Gao D. T.; Yang J. R.; Yang X. M.; Su Y. L.; Lu T. L. Conversion of recalcitrant cellulose to alkyl levulinates and levulinic acid via oxidation pretreatment combined with alcoholysis over Al2(SO4)3. Cellulose, 2020, 27(3), 1451-1463. doi:10.1007/s10570-019-02903-1http://dx.doi.org/10.1007/s10570-019-02903-1
Han Y. W.; Ye L.; Gu X. C.; Zhu P. L.; Lu X. B. Lignin-based solid acid catalyst for the conversion of cellulose to levulinic acid using γ-valerolactone as solvent. Ind. Crops Prod., 2019, 127, 88-93. doi:10.1016/j.indcrop.2018.10.058http://dx.doi.org/10.1016/j.indcrop.2018.10.058
Yang J. M.; Lu X. M.; Zhang Y. Q.; Xu J. L.; Yang Y. Q.; Zhou Q. A facile ionic liquid approach to prepare cellulose fiber with good mechanical properties directly from corn stalks. Green Energy Environ., 2020, 5(2), 223-231. doi:10.1016/j.gee.2019.12.004http://dx.doi.org/10.1016/j.gee.2019.12.004
Zhao G. L.; Wang F. L.; Lang X. F.; He B. H.; Li J. R.; Li X. F. Facile one-pot fabrication of cellulose nanocrystals and enzymatic synthesis of its esterified derivative in mixed ionic liquids. RSC Adv., 2017, 7(43), 27017-27023. doi:10.1039/c7ra02570jhttp://dx.doi.org/10.1039/c7ra02570j
Huang L.; Wu Q.; Wang Q. W.; Wolcott M. One-step activation and surface fatty acylation of cellulose fibers in a solvent-free condition. ACS Sustain. Chem. Eng., 2019, 7(19), 15920-15927. doi:10.1021/acssuschemeng.9b01974http://dx.doi.org/10.1021/acssuschemeng.9b01974
Long Y. Q.; Zhou H.; Meng A. H.; Li Q. H.; Zhang Y. G. Interactions among biomass components during co-pyrolysis in (macro)thermogravimetric analyzers. Korean J. Chem. Eng., 2016, 33(9), 2638-2643. doi:10.1007/s11814-016-0102-xhttp://dx.doi.org/10.1007/s11814-016-0102-x
Jin L. M.; Gan J. Y.; Hu G.; Cai L.; Li Z. Q.; Zhang L. H.; Zheng Q.; Xie H. B. Preparation of cellulose films from sustainable CO2/DBU/DMSO system. Polymers, 2019, 11(6), 994. doi:10.3390/polym11060994http://dx.doi.org/10.3390/polym11060994
0
浏览量
180
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构