浏览全部资源
扫码关注微信
1.纤维材料改性国家重点实验室 东华大学化学与化工学院 先进低维材料中心 上海 201620
2.武汉纺织大学材料科学与工程学院 武汉 430200
E-mail: wangd@wtu.edu.cn
shengtongsun@dhu.edu.cn
纸质出版日期:2024-05-20,
网络出版日期:2024-02-01,
收稿日期:2023-11-16,
录用日期:2023-12-19
移动端阅览
时英坤, 王栋, 武培怡, 孙胜童. 提拉纺丝制备弹性离子液体凝胶纤维. 高分子学报, 2024, 55(5), 573-581
Shi, Y. K.; Wang, D.; Wu, P. Y.; Sun, S. T. Pultrusion spinning of elastic ionogel fibers. Acta Polymerica Sinica, 2024, 55(5), 573-581
时英坤, 王栋, 武培怡, 孙胜童. 提拉纺丝制备弹性离子液体凝胶纤维. 高分子学报, 2024, 55(5), 573-581 DOI: 10.11777/j.issn1000-3304.2023.23266.
Shi, Y. K.; Wang, D.; Wu, P. Y.; Sun, S. T. Pultrusion spinning of elastic ionogel fibers. Acta Polymerica Sinica, 2024, 55(5), 573-581 DOI: 10.11777/j.issn1000-3304.2023.23266.
规模化制备兼具高弹性和高离子电导率的可拉伸导电纤维极具挑战性. 为此,我们开发了一步法提拉纺丝策略,可连续制备高弹性离子液体凝胶纤维. 其中,离子液体与聚合物基质以非共价相互作用结合,在纤维中稳定存在,并可大幅调控纤维力学性能. 得益于通过氢键自发纳米限域形成的多尺度相分离结构,所得离子液体凝胶纤维具有良好的拉伸性(707%)、高透明度(98%)、高回弹性(残余应变仅9%)、导电性(0.12 S·m
-1
)以及抗冻性能. 此外,该纤维还可对湿气、温度以及应变表现出极为灵敏的信号感知能力. 这一工作为开发面向智能感知的高性能离子导电纤维材料提供了设计思路.
Stretchable ionically conductive fibers hold great promise in the fields of flexible electronic devices
smart textiles
and human-machine interfaces. However
the scalable production of stretchable fibers with both high conductivity and elasticity remains a significant challenge. In recent years
pultrusion spinning has emerged as a promising technique for the continuous fabrication of ultrathin gel fibers at ambient conditions. Nevertheless
the reduction in fiber diameter often comes at the cost of significantly increased resistance
hampering their applications in smart sensing. To overcome this limitation
in this study
we introduce a one-step pultrusion spinning approach for the continuous production of highly elastic ionogel fibers. Our ionogel fiber is derived from a spinning dope containing poly(2-(dimethylamino)ethylacrylate) methyl chloride quarternary salt (PDMAEA-Q)
poly(methacrylic acid) (PMAA)
and an ionic liquid
1-ethyl-3-methylimidazolium ethyl sulfate (EMI ES). Upon water evaporation
PMAA chains undergo nanoconfinement through hydrogen bonding
forming numerous clusters dispersed within the ductile PDMAEA-Q matrix. Moreover
the employed ionic liquid
EMI ES
interacts with polymer matrix through various physical interactions
further modulating the mechanical and electric properties of the resulting fiber. Owing to its hierarchical phase-separated structure formed by spontaneous nanoconfinement
the ionogel fiber exhibits exceptional stretchability (707% elongation)
remarkable transparency (98%)
high elasticity (~9% residual strain)
high ionic conductivity (0.12 S·m
-1
)
and anti-freezing properties. Furthermore
the ionogel fiber is sensitive to humidity
temperature
and strain changes
enabling its high-resolution detection of different stimuli
via
electrical signals. This work paves the way for the design of advanced ionically conductive fibers
unlocking a myriad of possibilities in smar
t sensing applications.
纺丝导电纤维离子液体凝胶智能感知
SpinningConductive fiberIonogelSmart sensing
Ju M.; Wu B. H.; Sun S. T.; Wu P. Y. Redox-active iron-citrate complex regulated robust coating-free hydrogel microfiber net with high environmental tolerance and sensitivity. Adv. Funct. Mater., 2020, 30(14), 1910387. doi:10.1002/adfm.201910387http://dx.doi.org/10.1002/adfm.201910387
Lee Y.; Song W. J.; Jung Y.; Yoo H.; Kim M. Y.; Kim H. Y.; Sun J. Y. Ionic spiderwebs. Sci. Robot., 2020, 5(44), eaaz5405. doi:10.1126/scirobotics.aaz5405http://dx.doi.org/10.1126/scirobotics.aaz5405
Liao M.; Wang C.; Hong Y.; Zhang Y. F.; Cheng X. L.; Sun H.; Huang X. L.; Ye L.; Wu J. X.; Shi X.; Kang X. Y.; Zhou X. F.; Wang J. W.; Li P. Z.; Sun X. M.; Chen P. N.; Wang B. J.; Wang Y. G.; Xia Y. Y.; Cheng Y. H.; Peng H. S. Industrial scale production of fibre batteries by a solution-extrusion method. Nat. Nanotechnol., 2022, 17(4), 372-377. doi:10.1038/s41565-021-01062-4http://dx.doi.org/10.1038/s41565-021-01062-4
Mo F. N.; Liang G. J.; Huang Z. D.; Li H. F.; Wang D. H.; Zhi C. Y. An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties. Adv. Mater., 2020, 32(5), e1902151. doi:10.1002/adma.201902151http://dx.doi.org/10.1002/adma.201902151
Hao Y.; Zhang Y. N.; Mensah A.; Liao S. Q.; Lv P. F.; Wei Q. F. Scalable, ultra-high stretchable and conductive fiber triboelectric nanogenerator for biomechanical sensing. Nano Energy, 2023, 109, 108291. doi:10.1016/j.nanoen.2023.108291http://dx.doi.org/10.1016/j.nanoen.2023.108291
Yang Z. H.; Zhai Z. R.; Song Z. M.; Wu Y. Z.; Liang J. H.; Shan Y. F.; Zheng J. R.; Liang H. C.; Jiang H. Q. Conductive and elastic 3D helical fibers for use in washable and wearable electronics. Adv. Mater., 2020, 32(10), e1907495. doi:10.1002/adma.202070076http://dx.doi.org/10.1002/adma.202070076
Wei L. Q.; Wang S. S.; Shan M. Q.; Li Y. M.; Wang Y. L.; Wang F. J.; Wang L.; Mao J. F. Conductive fibers for biomedical applications. Bioact. Mater., 2023, 22, 343-364. doi:10.1016/j.bioactmat.2022.10.014http://dx.doi.org/10.1016/j.bioactmat.2022.10.014
Sim H. J.; Choi C.; Lee D. Y.; Kim H.; Yun J. H.; Kim J. M.; Kang T. M.; Ovalle R.; Baughman R. H.; Kee C. W.; Kim S. J. Biomolecule based fiber supercapacitor for implantable device. Nano Energy, 2018, 47, 385-392. doi:10.1016/j.nanoen.2018.03.011http://dx.doi.org/10.1016/j.nanoen.2018.03.011
Lu C.; Park S.; Richner T. J.; Derry A.; Brown I.; Hou C.; Rao S. Y.; Kang J.; Mortiz C. T.; Fink Y.; Anikeeva P. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits. Sci. Adv., 2017, 3(3), e1600955. doi:10.1126/sciadv.1600955http://dx.doi.org/10.1126/sciadv.1600955
Seyedin S.; Razal J. M.; Innis P. C.; Jeiranikhameneh A.; Beirne S.; Wallace G. G. Knitted strain sensor textiles of highly conductive all-polymeric fibers. ACS Appl. Mater. Interfaces, 2015, 7(38), 21150-21158. doi:10.1021/acsami.5b04892http://dx.doi.org/10.1021/acsami.5b04892
Granero A. J.; Wagner P.; Wagner K.; Razal J. M.; Wallace G. G.; in het Panhuis M. Highly stretchable conducting SIBS-P3HT fibers. Adv. Funct. Mater., 2011, 21(5), 955-962. doi:10.1002/adfm.201001460http://dx.doi.org/10.1002/adfm.201001460
Zhang X. H.; Lu W. B.; Zhou G. H.; Li Q. W. Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics. Adv. Mater., 2020, 32(5), e1902028. doi:10.1002/adma.201902028http://dx.doi.org/10.1002/adma.201902028
Kim I. H.; Yun T.; Kim J. E.; Yu H.; Sasikala S. P.; Lee K. E.; Koo S. H.; Hwang H.; Jung H. J.; Park J. Y.; Jeong H. S.; Kim S. O. Mussel-inspired defect engineering of graphene liquid crystalline fibers for synergistic enhancement of mechanical strength and electrical conductivity. Adv. Mater., 2018, 30, e1803267. doi:10.1002/adma.201870298http://dx.doi.org/10.1002/adma.201870298
Zheng L. J.; Zhu M. M.; Wu B. H.; Li Z. L.; Sun S. T.; Wu P. Y. Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing. Sci. Adv., 2021, 7(22), eabg4041. doi:10.1126/sciadv.abg4041http://dx.doi.org/10.1126/sciadv.abg4041
Zhao X.; Chen F.; Li Y. H.; Lu H.; Zhang N.; Ma M. M. Bioinspired ultra-stretchable and anti-freezing conductive hydrogel fibers with ordered and reversible polymer chain alignment. Nat. Commun., 2018, 9(1), 3579. doi:10.1038/s41467-018-05904-zhttp://dx.doi.org/10.1038/s41467-018-05904-z
Yao M. Y.; Wu B. H.; Feng X. D.; Sun S. T.; Wu P. Y. A highly robust ionotronic fiber with unprecedented mechanomodulation of ionic conduction. Adv. Mater., 2021, 33(42), e2103755. doi:10.1002/adma.202103755http://dx.doi.org/10.1002/adma.202103755
Lee S.; Sasaki D.; Kim D.; Mori M. M.; Yokota T.; Lee H.; Park S.; Fukuda K.; Sekino M.; Matsuura K.; Shimizu T.; Someya T. Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nat. Nanotechnol., 2019, 14(2), 156-160. doi:10.1038/s41565-018-0331-8http://dx.doi.org/10.1038/s41565-018-0331-8
Wu H.; Kong D. S.; Ruan Z. C.; Hsu P. C.; Wang S.; Yu Z. F.; Carney T. J.; Hu L. B.; Fan S. H.; Cui Y. A transparent electrode based on a metal nanotrough network. Nat. Nanotechnol., 2013, 8(6), 421-425. doi:10.1038/nnano.2013.84http://dx.doi.org/10.1038/nnano.2013.84
Song J. C.; Chen S.; Sun L. J.; Guo Y. F.; Zhang L. Z.; Wang S. L.; Xuan H. X.; Guan Q. B.; You Z. W. Mechanically and electronically robust transparent organohydrogel fibers. Adv. Mater., 2020, 32(8), e1906994. doi:10.1002/adma.201906994http://dx.doi.org/10.1002/adma.201906994
Tan H.; Zhang L. Z.; Ma X. P.; Sun L. J.; Yu D. L.; You Z. W. Adaptable covalently cross-linked fibers. Nat. Commun., 2023, 14(1), 2218. doi:10.1038/s41467-023-37850-whttp://dx.doi.org/10.1038/s41467-023-37850-w
Shi Y. K.; Wu B. H.; Sun S. T.; Wu P. Y. Aqueous spinning of robust, self-healable, and crack-resistant hydrogel microfibers enabled by hydrogen bond nanoconfinement. Nat. Commun., 2023, 14(1), 1370. doi:10.1038/s41467-023-37036-4http://dx.doi.org/10.1038/s41467-023-37036-4
Zhao W. Q.; Shao F.; Sun F. Q.; Su Z. H.; Liu S. Y.; Zhang T.; Zhu M. F.; Liu Z. F.; Zhou X. Neuron-inspired sticky artificial spider silk for signal transmission. Adv. Mater., 2023, 35(32), e2300876. doi:10.1002/adma.202300876http://dx.doi.org/10.1002/adma.202300876
Zhang S. L.; Zhou M. J.; Liu M. Y.; Guo Z. H.; Qu H.; Chen W. S.; Tan S. C. Ambient-conditions spinning of functional soft fibers via engineering molecular chain networks and phase separation. Nat. Commun., 2023, 14(1), 3245. doi:10.1038/s41467-023-38269-zhttp://dx.doi.org/10.1038/s41467-023-38269-z
Dou Y. Y.; Wang Z. P.; He W. Q.; Jia T. J.; Liu Z. J.; Sun P. C.; Wen K.; Gao E. L.; Zhou X.; Hu X. Y.; Li J. J.; Fang S. L.; Qian D.; Liu Z. F. Artificial spider silk from ion-doped and twisted core-sheath hydrogel fibres. Nat. Commun., 2019, 10(1), 5293. doi:10.1038/s41467-019-13257-4http://dx.doi.org/10.1038/s41467-019-13257-4
Chu C. K.; Joseph A. J.; Limjoco M. D.; Yang J. W.; Bose S. M.; Thapa L. S.; Langer R.; Anderson D. G. Chemical tuning of fibers drawn from extensible hyaluronic acid networks. J. Am. Chem. Soc., 2020, 142(46), 19715-19721. doi:10.1021/jacs.0c09691http://dx.doi.org/10.1021/jacs.0c09691
Wu Y. C.; Shah D. U.; Liu C. Y.; Yu Z. Y.; Liu J.; Ren X. H.; Rowland M. J.; Abell C.; Ramage M. H.; Scherman O. A. Bioinspired supramolecular fibers drawn from a multiphase self-assembled hydrogel. Proc. Natl. Acad. Sci. USA, 2017, 114(31), 8163-8168. doi:10.1073/pnas.1705380114http://dx.doi.org/10.1073/pnas.1705380114
Cruz M. V.; Shah D. U.; Warner N. C.; McCune J. A.; Scherman O. A. Facile, energy-efficient microscale fibrillation of polyacrylamides under ambient conditions. Adv. Mater., 2022, 34(23), e2201577. doi:10.1002/adma.202201577http://dx.doi.org/10.1002/adma.202201577
Sun J. K.; Guo W. J.; Mei G. K.; Wang S. L.; Wen K.; Wang M. L.; Feng D. Y.; Qian D.; Zhu M. F.; Zhou X.; Liu Z. F. Artificial spider silk with buckled sheath by nano-pulley combing. Adv. Mater., 2023, 35(32), e2212112. doi:10.1002/adma.202212112http://dx.doi.org/10.1002/adma.202212112
Ling S. J.; Qin Z.; Li C. M.; Huang W. W.; Kaplan D. L.; Buehler M. J. Polymorphic regenerated silk fibers assembled through bioinspired spinning. Nat. Commun., 2017, 8(1), 1387. doi:10.1038/s41467-017-00613-5http://dx.doi.org/10.1038/s41467-017-00613-5
Zhang S. L.; Zhou Y. H.; Libanori A.; Deng Y. B.; Liu M. Y.; Zhou M. J.; Qu H.; Zhao X.; Zheng P.; Zhu Y. L.; Chen J.; Tan S. C. Biomimetic spinning of soft functional fibres via spontaneous phase separation. Nat. Electron., 2023, 6, 338-348. doi:10.1038/s41928-023-00960-whttp://dx.doi.org/10.1038/s41928-023-00960-w
Holland C.; Terry A. E.; Porter D.; Vollrath F. Comparing the rheology of native spider and silkworm spinning dope. Nat. Mater., 2006, 5(11), 870-874. doi:10.1038/nmat1762http://dx.doi.org/10.1038/nmat1762
Fang X.; Li Y. X.; Li X.; Liu W. M.; Yu X. H.; Yan F.; Sun J. Q. Dynamic hydrophobic domains enable the fabrication of mechanically robust and highly elastic poly(vinyl alcohol)-based hydrogels with excellent self-healing ability. ACS Mater. Lett., 2020, 2(7), 764-770. doi:10.1021/acsmaterialslett.0c00075http://dx.doi.org/10.1021/acsmaterialslett.0c00075
0
浏览量
482
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构