浏览全部资源
扫码关注微信
复旦大学 聚合物分子工程国家重点实验室 高分子科学系 上海 200433
[ "闫强,男,1985年生,复旦大学高分子科学系教授,博士生导师. 2008年和2012年分别获得清华大学学士和博士学位. 2012~2015年在加拿大舍布鲁克大学化学系从事博士后研究工作. 2015年6月加入复旦大学高分子科学系开展独立研究工作,2019年获得中国化学会青年化学奖、上海市青年科技启明星. 主要研究方向为气体调控的高分子组装与智能高分子材料." ]
纸质出版日期:2024-07-20,
网络出版日期:2024-03-08,
收稿日期:2023-12-20,
录用日期:2024-01-08
移动端阅览
牟桂芳, 杨翠琴, 闫强. 气体调控的高分子自组装. 高分子学报, 2024, 55(7), 781-801
Mu, G. F.; Yang, C. Q.; Yan, Q. Gas-regulated polymer self-assembly. Acta Polymerica Sinica, 2024, 55(7), 781-801
牟桂芳, 杨翠琴, 闫强. 气体调控的高分子自组装. 高分子学报, 2024, 55(7), 781-801 DOI: 10.11777/j.issn1000-3304.2023.23288.
Mu, G. F.; Yang, C. Q.; Yan, Q. Gas-regulated polymer self-assembly. Acta Polymerica Sinica, 2024, 55(7), 781-801 DOI: 10.11777/j.issn1000-3304.2023.23288.
响应性高分子是智能高分子的重要组成部分,其可以感应外部刺激、通过改变高分子结构实现对高分子功能的精确调控. 气体作为一种不同于常规物理或化学信号的“绿色”刺激方式,用于对高分子自组装过程的调控具有重要意义. 然而,由于气体分子通常缺乏可控反应位点且调控过程难以量化控制,目前这一刺激-调控方式的发展相对缓慢. 面对上述挑战,本文系统介绍了“气敏高分子”与“气筑高分子”两类新型气体调控的高分子组装系统. 结合本课题组工作,总结了以生命体三大气体信号分子——硫化氢(H
2
S)、一氧化碳(CO)和一氧化氮(NO)为刺激源,面向气敏高分子的设计与可控组装方面的研究进展;以及通过气体动态化学,以二氧化碳(CO
2
)等气体为连接单元,面向气筑高分子的结构设计、动态自组装及其功能应用方面的研究工作.
Polymer self-assembly is an important branch of the self-assembly field
and research on the precise control of its assembly process and function is necessary t
o further broaden its application scope. Gas
as a "green" stimulus
different from conventional physical or chemical signals
is of great significance for the regulation of the self-assembly process of polymers. Combining the work of our research group
this paper systematically introduces two types of new gas-regulated polymer assembly systems: "gas-responsive polymers" and "gas-constructed polymers". Gas-responsive polymers can respond to external gas signal stimulation
change their amphiphilicity or aggregation state by reacting with gas molecules and specific chemical moieties in the polymer
thereby affecting their self-assembly behavior and outputting functions. The progress of research on the design and controllable assembly of gas-sensitive polymers is summarized
focusing on the three major gas signal molecules in living organisms—hydrogen sulfide (H
2
S)
carbon monoxide (CO)
and nitric oxide (NO) as stimuli sources. Gas-constructed polymers use gas molecules as assembly units to construct polymer materials. Then introduces the "dynamic gas bridge" formed between boron/phosphorus frustrated Lewis acid-base pairs and gas molecules such as carbon dioxide (CO
2
)
as well as research on the structure design
dynamic self-assembly
and functional applications of gas-constructed polymers. Finally
the future development of these two types of gas regulated polymers was discussed. Gas-responsive polymers can be used in the design of multi-signal molecule-programmed responsive systems
achieving intelligent intracellular targeted release and carrier transport functions. Gas-constructed polymers
while having universality for a broad spectrum of gas molecules
lack selectivity for single gas molecules and have poor chemical tolerance in the design of complex functions. The solution to this problem will lay the foundation for the development of a wider range of functional gas-constructed assembly materials.
高分子自组装气体气敏高分子气筑高分子功能组装体
Polymer self-assemblyGasGas-responsive polymerGas-constructed polymerFunctional assemblies
MacFarlane L. R.; Shaikh H.; Garcia-Hernandez J. D.; Vespa M.; Fukui T.; Manners I. Functional nanoparticles through π-conjugated polymer self-assembly. Nat. Rev. Mater., 2021, 6, 7-26. doi:10.1038/s41578-020-00233-4http://dx.doi.org/10.1038/s41578-020-00233-4
Service R. F. How far can we push chemical self-assembly? Science, 2005, 309(5731), 95. doi:10.1126/science.309.5731.95http://dx.doi.org/10.1126/science.309.5731.95
Zhang J. M.; Jiang J. H.; Lin S.; Cornel E. J.; Li C.; Du J. Z. Polymersomes: from macromolecular self-assembly to particle assembly. Chinese J. Chem., 2022, 40(15), 1842-1855. doi:10.1002/cjoc.202200182http://dx.doi.org/10.1002/cjoc.202200182
Shi J. Q.; Sun Q. M.; Wang W. L.; Li C.; Yin H. Y.; Li H. L.; Teng R. X.; Fan Z.; Zhu Y. Q.; Du J. Z. Challenges and future directions for next-generation biomedical polymersomes. Sci. China Mater., 2024, 67(1), 18-30. doi:10.1007/s40843-023-2677-9http://dx.doi.org/10.1007/s40843-023-2677-9
Chen S.; Cornel E. J.; Du J. Z. Controlling membrane phase separation of polymersomes for programmed drug release. Chinese J. Polym. Sci., 2022, 40(9), 1006-1015. doi:10.1007/s10118-022-2683-7http://dx.doi.org/10.1007/s10118-022-2683-7
Xue M.; Yang Y.; Chi X. D.; Yan X. Z.; Huang F. H. Development of pseudorotaxanes and rotaxanes: from synthesis to stimuli-responsive motions to applications. Chem. Rev., 2015, 115(15), 7398-7501. doi:10.1021/cr5005869http://dx.doi.org/10.1021/cr5005869
Dou W. T.; Yang C. Y.; Hu L. R.; Song B.; Jin T. X.; Jia P. P.; Ji X. L.; Zheng F.; Yang H. B.; Xu L. Metallacages and covalent cages for biological imaging and therapeutics. ACS Mater. Lett., 2023, 5(4), 1061-1082. doi:10.1021/acsmaterialslett.2c01147http://dx.doi.org/10.1021/acsmaterialslett.2c01147
Bochicchio D.; Pavan G. M. From cooperative self-assembly to water-soluble supramolecular polymers using coarse-grained simulations. ACS Nano, 2017, 11(1), 1000-1011. doi:10.1021/acsnano.6b07628http://dx.doi.org/10.1021/acsnano.6b07628
Li S. L.; Yu C. Y.; Zhou Y. F. Phase diagrams, mechanisms and unique characteristics of alternating-structured polymer self-assembly via simulations. Sci. China Chem., 2019, 62(2), 226-237. doi:10.1007/s11426-018-9360-3http://dx.doi.org/10.1007/s11426-018-9360-3
Yang J.; An H. W.; Wang H. Self-assembled peptide drug delivery systems. ACS Appl. Bio Mater., 2021, 4(1), 24-46. doi:10.1021/acsabm.0c00707http://dx.doi.org/10.1021/acsabm.0c00707
Langer R.; Folkman J. Polymers for the sustained release of proteins and other macromolecules. Nature, 1976, 263(5580), 797-800. doi:10.1038/263797a0http://dx.doi.org/10.1038/263797a0
Li Z. W.; Fan Q. S.; Yin Y. D. Colloidal self-assembly approaches to smart nanostructured materials. Chem. Rev., 2022, 122(5), 4976-5067. doi:10.1021/acs.chemrev.1c00482http://dx.doi.org/10.1021/acs.chemrev.1c00482
Li G.; Zhu R.; Yang Y. Polymer solar cells. Nat. Photonics, 2012, 6, 153-161. doi:10.1038/nphoton.2012.11http://dx.doi.org/10.1038/nphoton.2012.11
Xu M. M.; Liu R. J.; Yan Q. Biological stimuli-responsive polymer systems: design, construction and controlled self-assembly. Chinese J. Polym. Sci., 2018, 36(3), 347-365. doi:10.1007/s10118-018-2080-4http://dx.doi.org/10.1007/s10118-018-2080-4
Sariciftci N. S.; Smilowitz L.; Heeger A. J.; Wudl F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science, 1992, 258(5087), 1474-1476. doi:10.1126/science.258.5087.1474http://dx.doi.org/10.1126/science.258.5087.1474
Li Y. T.; Lokitz B. S.; McCormick C. L. Thermally responsive vesicles and their structural "locking" through polyelectrolyte complex formation. Angew. Chem. Int. Ed., 2006, 45(35), 5792-5795. doi:10.1002/anie.200602168http://dx.doi.org/10.1002/anie.200602168
Ma N.; Li Y.; Xu H. P.; Wang Z. Q.; Zhang X. Dual redox responsive assemblies formed from diselenide block copolymers. J. Am. Chem. Soc., 2010, 132(2), 442-443. doi:10.1021/ja908124ghttp://dx.doi.org/10.1021/ja908124g
Song Q. W.; Zhou Z. H.; He L. N. Efficient, selective and sustainable catalysis of carbon dioxide. Green Chem., 2017, 19(16), 3707-3728. doi:10.1039/c7gc00199ahttp://dx.doi.org/10.1039/c7gc00199a
Mocellin S.; Bronte V.; Nitti D. Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities. Med. Res. Rev., 2007, 27(3), 317-352. doi:10.1002/med.20092http://dx.doi.org/10.1002/med.20092
Li L.; Moore P. K. Putative biological roles of hydrogen sulfide in health and disease: a breath of not so fresh air? Trends Pharmacol. Sci., 2008, 29(2), 84-90. doi:10.1016/j.tips.2007.11.003http://dx.doi.org/10.1016/j.tips.2007.11.003
Zheng Y. Q.; Yu B. C.; de la Cruz L. K.; Roy ChoudhuryM.; Anifowose A.; Wang B. H. Toward hydrogen sulfide based therapeutics: critical drug delivery and developability issues. Med. Res. Rev., 2018, 38(1), 57-100. doi:10.1002/med.21433http://dx.doi.org/10.1002/med.21433
Yan, Q.; Sang, W. H2S gasotransmitter-responsive polymer vesicles. Chem. Sci., 2016, 7(3), 2100-2105. doi:10.1039/c5sc03576ghttp://dx.doi.org/10.1039/c5sc03576g
Yang J.; Yu X. Y.; Song J. I.; Song Q.; Hall S. C. L.; Yu G. C.; Perrier S. Aggregation-induced emission featured supramolecular tubisomes for imaging-guided drug delivery. Angew. Chem. Int. Ed., 2022, 61(9), e202115208. doi:10.1002/anie.202115208http://dx.doi.org/10.1002/anie.202115208
Kimura H. Physiological role of hydrogen sulfide and polysulfide in the central nervous system. Neurochem. Int., 2013, 63(5), 492-497. doi:10.1016/j.neuint.2013.09.003http://dx.doi.org/10.1016/j.neuint.2013.09.003
Vasas A.; Dóka É.; Fábián I.; Nagy P. Kinetic and thermodynamic studies on the disulfide-bond reducing potential of hydrogen sulfide. Nitric Oxide, 2015, 46, 93-101. doi:10.1016/j.niox.2014.12.003http://dx.doi.org/10.1016/j.niox.2014.12.003
Zhang J.; Hao X.; Sang W.; Yan Q. Hydrogen polysulfide biosignal-responsive polymersomes as a nanoplatform for distinguishing intracellular reactive sulfur species (RSS). Small, 2017, 13(39), 1701601. doi:10.1002/smll.201701601http://dx.doi.org/10.1002/smll.201701601
Liu X.; Zhu J. N.; Ouyang K. B.; Yan Q. Peroxynitrite-biosignal-responsive polymer micelles as intracellular hypersensitive nanoprobes. Polym. Chem., 2018, 9(41), 5075-5079. doi:10.1039/c8py01110ahttp://dx.doi.org/10.1039/c8py01110a
Liu D. Q.; Liao Y. Y.; Cornel E. J.; Lv M. C.; Wu T.; Zhang X. Y.; Fan L. J.; Sun M.; Zhu Y. Q.; Fan Z.; Du J. Z. Polymersome wound dressing spray capable of bacterial inhibition and H2S generation for complete diabetic wound healing. Chem. Mater., 2021, 33(20), 7972-7985. doi:10.1021/acs.chemmater.1c01872http://dx.doi.org/10.1021/acs.chemmater.1c01872
Yang C. Q.; Li X. F.; Yan Q. Polythionoester vesicle: an efficient polymeric platform for tuning H2S release. ACS Macro Lett., 2022, 11(11), 1230-1237. doi:10.1021/acsmacrolett.2c00473http://dx.doi.org/10.1021/acsmacrolett.2c00473
Xu M. M.; Liu L. X.; Hu J.; Zhao Y.; Yan Q. CO-signaling molecule-responsive nanoparticles formed from palladium-containing block copolymers. ACS Macro Lett., 2017, 6(4), 458-462. doi:10.1021/acsmacrolett.7b00042http://dx.doi.org/10.1021/acsmacrolett.7b00042
Xu M. M.; Hao X.; Hu Z. W.; Yan Q. Palladium-bridged polymers as CO-biosignal-responsive self-healing hydrogels. Polym. Chem., 2020, 11(4), 779-783. doi:10.1039/c9py01660khttp://dx.doi.org/10.1039/c9py01660k
Liu R. J.; Xu M. M.; Yan Q. Nitric oxide-biosignal-responsive polypeptide nanofilaments. ACS Macro Lett., 2020, 9(3), 323-327. doi:10.1021/acsmacrolett.0c00004http://dx.doi.org/10.1021/acsmacrolett.0c00004
Duan Y. T.; Wang Y.; Li X. H.; Zhang G. Z.; Zhang G. Y.; Hu J. M. Light-triggered nitric oxide (NO) release from photoresponsive polymersomes for corneal wound healing. Chem. Sci., 2019, 11(1), 186-194. doi:10.1039/c9sc04039khttp://dx.doi.org/10.1039/c9sc04039k
Cheng J.; Zheng B.; Cheng S.; Zhang G. Y.; Hu J. M. Metal-free carbon monoxide-releasing micelles undergo tandem photochemical reactions for cutaneous wound healing. Chem. Sci., 2020, 11(17), 4499-4507. doi:10.1039/d0sc00135jhttp://dx.doi.org/10.1039/d0sc00135j
Gao L.; Cheng J.; Shen Z. Q.; Zhang G. Y.; Liu S. Y.; Hu J. M. Orchestrating nitric oxide and carbon monoxide signaling molecules for synergistic treatment of MRSA infections. Angew. Chem. Int. Ed., 2022, 61(3), e202112782. doi:10.1002/anie.202112782http://dx.doi.org/10.1002/anie.202112782
Kubas, G. J. Breaking the H2 marriage and reuniting the couple. Science, 2006, 314(5802), 1096-1097. doi:10.1126/science.1135430http://dx.doi.org/10.1126/science.1135430
McCahill J. ; Welch G.; Stephan D. Reactivity of "frustrated lewis pairs": three-component reactions of phosphines, a borane, and olefins. Angew. Chem. Int. Ed., 2007, 46(26), 4968-4971. doi:10.1002/anie.200701215http://dx.doi.org/10.1002/anie.200701215
Chase P. A.; Stephan D. W. Hydrogen and amine activation by a frustrated Lewis pair of a bulky N-heterocyclic carbene and B(C6F5)3. Angew. Chem. Int. Ed., 2008, 47(39), 7433-7437.
Moebs-Sanchez S.; Bouhadir G.; Saffon N.; Maron L.; Bourissou D. Tracking reactive intermediates in phosphine-promoted reactions with ambiphilic phosphino-boranes. Chem. Commun., 2008, (29), 3435-3437. doi:10.1039/b805161ehttp://dx.doi.org/10.1039/b805161e
Chen L.; Liu R. J.; Yan Q. Polymer meets frustrated lewis pair: Second-generation CO2-responsive nanosystem for sustainable CO2 conversion. Angew. Chem. Int. Ed., 2018, 57(30), 9336-9340. doi:10.1002/anie.201804034http://dx.doi.org/10.1002/anie.201804034
Liu R. J.; Liu X.; Ouyang K. B.; Yan Q. Catalyst-free click polymerization of CO2 and lewis monomers for recyclable C1 fixation and release. ACS Macro Lett., 2019, 8(2), 200-204. doi:10.1021/acsmacrolett.9b00066http://dx.doi.org/10.1021/acsmacrolett.9b00066
Zhang D. Y.; Boopathi S. K.; Hadjichristidis N.; Gnanou Y.; Feng X. S. Metal-free alternating copolymerization of CO2 epoxideswith: fulfilling "green" synthesis and activity. J. Am. Chem. Soc., 2016, 138(35), 11117-11120. doi:10.1021/jacs.6b06679http://dx.doi.org/10.1021/jacs.6b06679
Xu M. M.; Chen L.; Yan Q. Gas-constructed vesicles with gas-moldable membrane architectures. Angew. Chem. Int. Ed., 2020, 59(35), 15104-15108. doi:10.1002/anie.201907063http://dx.doi.org/10.1002/anie.201907063
Chen L.; Liu R. J.; Hao X.; Yan Q. CO2-cross-linked frustrated lewis networks as gas-regulated dynamic covalent materials. Angew. Chem. Int. Ed., 2019, 58(1), 264-268. doi:10.1002/anie.201812365http://dx.doi.org/10.1002/anie.201812365
Röttger M.; Domenech T.; van der Weegen R.; Breuillac A.; Nicolaÿ R.; Leibler L. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science, 2017, 356(6333), 62-65. doi:10.1126/science.aah5281http://dx.doi.org/10.1126/science.aah5281
Jie X. M.; Sun Q.; Daniliuc C. G.; Knitsch R.; Hansen M. R.; Eckert H.; Kehr G.; Erker G. Cycloaddition reactions of an active cyclic phosphane/borane pair with alkenes, alkynes, and carbon dioxide. Chem. Eur. J., 2020, 26(6), 1269-1273. doi:10.1002/chem.201905171http://dx.doi.org/10.1002/chem.201905171
Jie X. M.; Daniliuc C. G.; Knitsch R.; Hansen M. R.; Eckert H.; Ehlert S.; Grimme S.; Kehr G.; Erker G. Aggregation behavior of a six-membered cyclic frustrated phosphane/borane lewis pair: formation of a supramolecular cyclooctameric macrocyclic ring system. Angew. Chem. Int. Ed., 2019, 58(3), 882-886. doi:10.1002/anie.201811873http://dx.doi.org/10.1002/anie.201811873
Zhu J. N.; Gong Z. H.; Yang C. Q.; Yan Q. Reshaping membrane polymorphism of polymer vesicles through dynamic gas exchange. J. Am. Chem. Soc., 2021, 143(48), 20183-20191. doi:10.1021/jacs.1c07838http://dx.doi.org/10.1021/jacs.1c07838
Gong Z. H.; Wang Y. X.; Yan Q. Polymeric partners breathe together: using gas to direct polymer self-assembly via gas-bridging chemistry. Sci. China Chem., 2022, 65(7), 1401-1410. doi:10.1007/s11426-022-1266-8http://dx.doi.org/10.1007/s11426-022-1266-8
Zeng R. J.; Chen L.; Yan Q. CO2-folded single-chain nanoparticles as recyclable, improved carboxylase mimics. Angew. Chem. Int. Ed., 2020, 59(42), 18418-18422. doi:10.1002/anie.202006842http://dx.doi.org/10.1002/anie.202006842
0
浏览量
370
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构