浏览全部资源
扫码关注微信
烟台大学化学化工学院 烟台 264005
E-mail: ysqin@ytu.edu.cn
纸质出版日期:2024-06-20,
网络出版日期:2024-04-24,
收稿日期:2023-12-20,
录用日期:2024-01-26
移动端阅览
刘娇玉, 刘爽, 索泓一, 秦玉升. 胍基锌配合物催化丙交酯开环聚合研究. 高分子学报, 2024, 55(6), 770-780
Liu, J. Y.; Liu, S.; Suo, H. Y.; Qin, Y. S. Study on ring-opening polymerization of lactide catalyzed by guanidine zinc complexes. Acta Polymerica Sinica, 2024, 55(6), 770-780
刘娇玉, 刘爽, 索泓一, 秦玉升. 胍基锌配合物催化丙交酯开环聚合研究. 高分子学报, 2024, 55(6), 770-780 DOI: 10.11777/j.issn1000-3304.2023.23289.
Liu, J. Y.; Liu, S.; Suo, H. Y.; Qin, Y. S. Study on ring-opening polymerization of lactide catalyzed by guanidine zinc complexes. Acta Polymerica Sinica, 2024, 55(6), 770-780 DOI: 10.11777/j.issn1000-3304.2023.23289.
发展绿色、高效的催化剂技术替代目前广泛应用的锡类催化剂一直是聚乳酸(PLA)及其相关催化剂技术研究领域的热点. 本研究设计合成了双核胍基锌配合物,该配合物以环氧化物作为共引发剂,可在模拟工业条件下以较高的活性(TOF = 7.50×10
3
~3.45×10
4
h
-1
)催化丙交酯开环聚合,且在极低的催化剂浓度条件仍可保持良好活性. 聚合所得产物的凝胶渗透色谱(GPC)曲线呈单峰窄分布(1.25~1.49),分子量为6.2~34.3 kg/mol. 通过对低分子量聚合产物进行基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF-MS)表征分析,证实所得聚合产物以环状聚乳酸(
c
-PLA)为主,并提出可能的成环机理. 此外,该双核胍基锌配合物具有较好的普适性,可实现
ε
-己内酯(
ε
-CL)和
δ
-戊内酯(
δ
-VL)等多种内酯单体的开环聚合.
Poly(lactic acid) (PLA) is one of the most important biodegradable polymers
which has attracted much attention due to its renewable raw materials and excellent biodegradation properties. The quest to develop sustainable and high-performance catalytic technologies as alternatives to the tin catalysts
which are prevalent currently
is a hot topic in this field. Cyclic PLA
contrasting with the extensively produced linear PLA
has garnered significant attention due to its superior crystallinity
thermal stability
and low intrinsic viscosity
and it has been reported that the mixture of cyclic poly(lactic acid) and linear poly(lactic acid
) has better hydrolysis resistance and thermal stability. This study reports the design and synthesis of a binuclear guanidine zinc complex
exhibiting exceptional activity (TOF = 7.50×10
3
-3.45×10
4
h
-1
) in catalyzing lactide ring-opening polymerization for the efficient production of cyclic poly(lactic acid) under simulated industrial conditions. Gel permeation chromatography (GPC) analysis revealed a narrow
unimodal distribution (1.25-1.49) of the obtained products
with a molecular weight range of 6.2-34.3 kg/mol. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) characterization of low molecular weight products confirmed the predominant presence of cyclic PLA
allowing for the proposal of a plausible ring formation mechanism. Moreover
the experiment demonstrated the binuclear guanidine zinc complex's effective catalytic action on a diverse range of lactone monomers
offering a novel avenue for the development of broad-spectrum catalytic systems within the realm of metal catalysis.
金属胍配合物丙交酯环状聚乳酸双核锌配合物
Metal guanidine complexLactideCyclic poly(lactic acid)Binuclear zinc complex
Zhang X. Y.; Fevre M.; Jones G. O.; Waymouth R. M. Catalysis as an enabling science for sustainable polymers. Chem. Rev., 2018, 118(2), 839-885. doi:10.1021/acs.chemrev.7b00329http://dx.doi.org/10.1021/acs.chemrev.7b00329
安泽胜, 陈昶乐, 何军坡, 洪春雁, 李志波, 李子臣, 刘超, 吕小兵, 秦安军, 曲程科, 唐本忠, 陶友华, 宛新华, 王国伟, 王佳, 郑轲, 邹文凯. 中国高分子合成化学的研究与发展动态. 高分子学报, 2019, 50(10), 1083-1132. doi:10.11777/j.issn1000-3304.2019.19136http://dx.doi.org/10.11777/j.issn1000-3304.2019.19136
寇新慧, 沈勇, 李志波. 手性脲/有机碱二元体系协同催化外消旋丙交酯立构选择性开环聚合. 高分子学报, 2020, 51(10), 1121-1130. doi:10.11777/j.issn1000-3304.2020.20117http://dx.doi.org/10.11777/j.issn1000-3304.2020.20117
Mirkhalaf S. M.; Fagerström M. The mechanical behavior of polylactic acid (PLA) films: fabrication, experiments and modelling. Mech. Time Depend. Mater., 2021, 25(2), 119-131. doi:10.1590/0104-1428.1489http://dx.doi.org/10.1590/0104-1428.1489
Pachekoski W. M.; Dalmolin C.; Agnelli J. A. M. Biodegradable polymeric blends of PHB and PLA for film production. Polimeros, 2014, 24(4), 501-507. doi:10.1590/0104-1428.1489http://dx.doi.org/10.1590/0104-1428.1489
Gu J. C.; Xiao P.; Chen P.; Zhang L.; Wang H. L.; Dai L. W.; Song L. P.; Huang Y. J.; Zhang J. W.; Chen T. Functionalization of biodegradable PLA nonwoven fabric as superoleophilic and superhydrophobic material for efficient oil absorption and oil/water separation. ACS Appl. Mater. Interfaces, 2017, 9(7), 5968-5973. doi:10.1021/acsami.6b13547http://dx.doi.org/10.1021/acsami.6b13547
Shi J. W.; Zhang L.; Xiao P.; Huang Y. J.; Chen P.; Wang X. F.; Gu J. C.; Zhang J. W.; Chen T. Biodegradable PLA nonwoven fabric with controllable wettability for efficient water purification and photocatalysis degradation. ACS Sustain. Chem. Eng., 2018, 6(2), 2445-2452. doi:10.1021/acssuschemeng.7b03897http://dx.doi.org/10.1021/acssuschemeng.7b03897
Tümer E. H.; Erbil H. Y. Extrusion-based 3D printing applications of PLA composites: a review. Coatings, 2021, 11(4), 390. doi:10.3390/coatings11040390http://dx.doi.org/10.3390/coatings11040390
Ebrahimi F.; Ramezani Dana H. Polylactic acid (PLA) polymers: from properties to biomedical applications. Int. J. Polym. Mater. Polym. Biomater., 2022, 71(15), 1117-1130. doi:10.1080/00914037.2021.1944140http://dx.doi.org/10.1080/00914037.2021.1944140
Tanase C. E.; Spiridon I. PLA/chitosan/keratin composites for biomedical applications. Mat. Sci. Eng. C., 2014, 40, 242-247. doi:10.1016/j.msec.2014.03.054http://dx.doi.org/10.1016/j.msec.2014.03.054
Dechy-Cabaret O.; Martin-Vaca B.; Bourissou D. Controlled ring-opening polymerization of lactide and glycolide. ChemInform, 2005, 36(14), no. doi:10.1002/chin.200514262http://dx.doi.org/10.1002/chin.200514262
Schäfer P. M.; Herres-Pawlis S. Robust guanidine metal catalysts for the ring-opening polymerization of lactide under industrially relevant conditions. ChemPlusChem, 2020, 85(5), 1044-1052. doi:10.1002/cplu.202000252http://dx.doi.org/10.1002/cplu.202000252
Finne A.; Albertsson A. C. Controlled synthesis of star-shaped l-lactide polymers using new spirocyclic tin initiators. Biomacromolecules, 2002, 3(4), 684-690. doi:10.1021/bm020009ohttp://dx.doi.org/10.1021/bm020009o
dos Santos Vieira I.; Herres-Pawlis S. Lactide polymerisation with complexes of neutral N-donors—new strategies for robust catalysts. Eur. J. Inorg. Chem., 2012, 2012(5), 765-774. doi:10.1002/ejic.201101131http://dx.doi.org/10.1002/ejic.201101131
Fliedel C.; Vila-Viçosa D.; Calhorda M. J.; Dagorne S.; Avilés T. Dinuclear zinc—N-heterocyclic carbene complexes for either the controlled ring-opening polymerization of lactide or the controlled degradation of polylactide under mild conditions. ChemCatChem, 2014, 6(5), 1357-1367. doi:10.1002/cctc.201301015http://dx.doi.org/10.1002/cctc.201301015
Nylund P. V. S.; Monney B.; Weder C.; Albrecht M. N-Heterocyclic carbene iron complexes catalyze the ring-opening polymerization of lactide. Catal. Sci. Technol., 2022, 12(3), 996-1004. doi:10.1039/d1cy02143ehttp://dx.doi.org/10.1039/d1cy02143e
Harinath A.; Bhattacharjee J.; Sarkar A.; Panda T. K. Alkali metal complex-mediated ring-opening polymerization of rac-LA, ε-caprolactone, and δ-valerolactone. New J. Chem., 2019, 43(23), 8882-8891. doi:10.1039/c9nj01130ghttp://dx.doi.org/10.1039/c9nj01130g
Bhattacharjee J.; Harinath A.; Nayek H. P.; Sarkar A.; Panda T. K. Highly active and iso-selective catalysts for the ring-opening polymerization of cyclic esters using group 2 metal initiators. Chem. Eur. J., 2017, 23(39), 9319-9331. doi:10.1002/chem.201700672http://dx.doi.org/10.1002/chem.201700672
Liu J. J.; Zhang C.; Li Z. J.; Zhang L.; Xu J. X.; Wang H. X.; Xu S. Q.; Guo T. F.; Yang K.; Guo K. Dibutyl phosphate catalyzed commercial relevant ring-opening polymerizations to bio-based polyesters. Eur. Polym. J., 2019, 113, 197-207. doi:10.1016/j.eurpolymj.2019.01.057http://dx.doi.org/10.1016/j.eurpolymj.2019.01.057
Kan S. L.; Jin Y.; He X. J.; Chen J.; Wu H.; Ouyang P. K.; Guo K.; Li Z. J. Imidodiphosphoric acid as a bifunctional catalyst for the controlled ring-opening polymerization of δ-valerolactone and ε-caprolactone. Polym. Chem., 2013, 4(21), 5432-5439. doi:10.1039/c3py00667khttp://dx.doi.org/10.1039/c3py00667k
Chamberlain B. M.; Cheng M.; Moore D. R.; Ovitt T. M.; Lobkovsky E. B.; Coates G. W. Polymerization of lactide with zinc and magnesium β-diiminate complexes: stereocontrol and mechanism. J. Am. Chem. Soc., 2001, 123(14), 3229-3238. doi:10.1021/ja003851fhttp://dx.doi.org/10.1021/ja003851f
Wang Z. Y.; Xu G. Q.; Zhou L.; Lv C. D.; Yang R. L.; Dong B. Z.; Wang Q. G. Isoselective ring-opening polymerization of racemic lactide catalyzed by N-heterocyclic olefin/(thio)urea organocatalysts. Chinese J. Polym. Sci., 2021, 39(6), 709-715. doi:10.1016/j.eurpolymj.2019.109302http://dx.doi.org/10.1016/j.eurpolymj.2019.109302
Fuchs M.; Schmitz S.; Schafer P. M.; Secker T.; Metz A.; Ksiazkiewicz A. N.; Pich A.; Kogerler P.; Monakhov K. Y.; Herres-Pawlis S. Mononuclear zinc(II) schiff base complexes as catalysts for the ring-opening polymerization of lactide. Eur. Polym. J., 2020, 122, 109302. doi:10.1016/j.eurpolymj.2019.109302http://dx.doi.org/10.1016/j.eurpolymj.2019.109302
Jones M. D.; Davidson M. G.; Keir C. G.; Hughes L. M.; Mahon M. F.; Apperley D. C. Zinc(II) homogeneous and heterogeneous species and their application for the ring-opening polymerisation of rac-lactide. Eur. J. Inorg. Chem., 2009, 2009(5), 635-642. doi:10.1002/ejic.200801049http://dx.doi.org/10.1002/ejic.200801049
Hu M. G.; Song X. F.; Wang F. G.; Zhang W. Z.; Ma W. H.; Han F. Z. Ring-opening polymerization of rac-lactide catalyzed by magnesium and zinc complexes supported by an NNO ligand. New J. Chem., 2022, 46(3), 1175-1181. doi:10.1039/d1nj05157ahttp://dx.doi.org/10.1039/d1nj05157a
Petrus R.; Lis T.; Kowaliński A. Use of heterometallic alkali metal-magnesium aryloxides in ring-opening polymerization of cyclic esters. Dalton Trans., 2022, 51(23), 9144-9158. doi:10.1016/j.mcat.2022.112480http://dx.doi.org/10.1016/j.mcat.2022.112480
Federica S.; Giuseppe G.; Marina L.; Consiglia T.; Mina M. Zinc and magnesium catalysts for the synthesis for PLA and its degradation: clues for catalyst design. Mol. Catal., 2022, 528: 112480. doi:10.1016/j.mcat.2022.112480http://dx.doi.org/10.1016/j.mcat.2022.112480
Marin P.; Tschan M. J. L.; Isnard F.; Robert C.; Haquette P.; Trivelli X.; Chamoreau L. M.; Guérineau V.; Del Rosal I.; Maron L.; Venditto V.; Thomas C. M. Polymerization of rac-lactide using achiral iron complexes: access to thermally stable stereo complexes. Angew. Chem. Int. Ed., 2019, 58(36), 12585-12589. doi:10.1002/anie.201903224http://dx.doi.org/10.1002/anie.201903224
Rittinghaus R. D.; Karabulut A.; Hoffmann A.; Herres-Pawlis S. Active in sleep: iron guanidine catalyst performs ROP on dormant side of ATRP. Angew. Chem. Int. Ed., 2021, 60(40), 21795-21800. doi:10.1002/anie.202109053http://dx.doi.org/10.1002/anie.202109053
Bruckmoser J.; Henschel D.; Vagin S.; Rieger B. Combining high activity with broad monomer scope: indium salan catalysts in the ring-opening polymerization of various cyclic esters. Catal. Sci. Technol., 2022, 12(10), 3295-3302. doi:10.1039/d2cy00436dhttp://dx.doi.org/10.1039/d2cy00436d
Thongkham S.; Monot J.; Martin-Vaca B.; Bourissou D. Simple In-based dual catalyst enables significant progress in ε-decalactone ring-opening (co)polymerization. Macromolecules, 2019, 52(21), 8103-8113. doi:10.1021/acs.macromol.9b01511http://dx.doi.org/10.1021/acs.macromol.9b01511
Cheng M.; Attygalle A. B.; Lobkovsky E. B.; Coates G. W. Single-site catalysts for ring-opening polymerization: synthesis of heterotactic poly(lactic acid) from rac-Lactide. J. Am. Chem. Soc., 1999, 121(49), 11583-11584. doi:10.1021/ja992678ohttp://dx.doi.org/10.1021/ja992678o
Chellali J. E.; Alverson A. K.; Robinson J. R. Zinc aryl/alkyl β-diketiminates: balancing accessibility and stability for high-activity ring-opening polymerization of rac-lactide. ACS Catal., 2022, 12(9), 5585-5594. doi:10.1021/acscatal.2c00858http://dx.doi.org/10.1021/acscatal.2c00858
Xia M. F.; Zhuo C. X.; Ma X. J.; Zhang X. H.; Sun H. M.; Zhai Q. G.; Zhang Y. D. Assembly of the active center of organophosphorus hydrolase in metal-organic frameworks via rational combination of functional ligands. Chem. Commun., 2017, 53(82), 11302-11305. doi:10.1039/c7cc06270bhttp://dx.doi.org/10.1039/c7cc06270b
Yu I.; Acosta-Ramírez A.; Mehrkhodavandi P. Mechanism of living lactide polymerization by dinuclear indium catalysts and its impact on isoselectivity. J. Am. Chem. Soc., 2012, 134(30), 12758-12773. doi:10.1021/ja3048046http://dx.doi.org/10.1021/ja3048046
Fang J.; Yu I.; Mehrkhodavandi P.; Maron L. Theoretical Investigation of lactide ring-opening polymerization induced by a dinuclear indium catalyst. Organometallics, 2013, 32(23), 6950-6956. doi:10.1021/om400399khttp://dx.doi.org/10.1021/om400399k
Soobrattee S.; Zhai X. F.; Nyamayaro K.; Diaz C.; Kelley P.; Ebrahimi T.; Mehrkhodavandi P. Dinucleating amino-phenolate platform for zinc catalysts: impact on lactide polymerization. Inorg. Chem., 2020, 59(8), 5546-5557. doi:10.1021/acs.inorgchem.0c00250http://dx.doi.org/10.1021/acs.inorgchem.0c00250
Thevenon A.; Romain C.; Bennington M. S.; White A. J. P.; Davidson H. J.; Brooker S.; Williams C. K. Dizinc lactide polymerization catalysts: hyperactivity by control of ligand conformation and metallic cooperativity. Angew. Chem. Int. Ed., 2016, 55(30), 8680-8685. doi:10.1002/anie.201602930http://dx.doi.org/10.1002/anie.201602930
Ghosh S.; Schulte Y.; Wölper C.; Tjaberings A.; Gröschel A. H.; Haberhauer G.; Schulz S. Cooperative effect in binuclear zinc catalysts in the ROP of lactide. Organometallics, 2022, 41(19), 2698-2708. doi:10.1016/j.eurpolymj.2019.04.024http://dx.doi.org/10.1016/j.eurpolymj.2019.04.024
Kricheldorf H. R.; Weidner S. M.; Scheliga F. Ring-expansion polymerization (REP) of L-lactide with cyclic Tin(II) bisphenoxides. Eur. Polym. J., 2019, 116, 256-264. doi:10.1016/j.eurpolymj.2019.04.024http://dx.doi.org/10.1016/j.eurpolymj.2019.04.024
Haque F. M.; Grayson S. M. The synthesis, properties and potential applications of cyclic polymers. Nat. Chem., 2020, 12(5), 433-444. doi:10.1038/s41557-020-0440-5http://dx.doi.org/10.1038/s41557-020-0440-5
Culkin D. A.; Jeong W.; Csihony S.; Gomez E. D.; Balsara N. P.; Hedrick J. L.; Waymouth R. M. Zwitterionic polymerization of lactide to cyclic poly(lactide) by using N-heterocyclic carbene organocatalysts. Angew. Chem. Int. Ed., 2007, 46(15), 2627-2630. doi:10.1002/anie.200604740http://dx.doi.org/10.1002/anie.200604740
Baśko M.; Kubisa, P. Cationic polymerization of L,L-lactide. J. Polym. Sci. A. Polym. Chem., 2010, 48(12), 2650-2658.
Wild U.; Neuhäuser C.; Wiesner S.; Kaifer E.; Wadepohl H.; Himmel H. J. Redox-controlled hydrogen bonding: turning a superbase into a strong hydrogen-bond donor. Chem. Eur. J., 2014, 20(20), 5914-5925. doi:10.1002/chem.201304882http://dx.doi.org/10.1002/chem.201304882
Impemba S.; Della Monica F.; Grassi A.; Capacchione C.; Milione S. Cyclic polyester formation with an [OSSO]-type iron(III) catalyst. ChemSusChem, 2020, 13(1), 141-145. doi:10.1002/cssc.201902163http://dx.doi.org/10.1002/cssc.201902163
Suo H. Y.; Liu S.; Liu J. Y.; Zhang Z. S.; Qu R.; Gu Y. N.; Qin Y. S. Novel epoxide-promoted polymerization of lactides mediated by a zinc guanidine complex: a potential strategy for the tin-free PLA industry. Polym. Chem., 2023, 14(40), 4652-4658. doi:10.1039/d3py00890hhttp://dx.doi.org/10.1039/d3py00890h
Chen J. W.; Wu X. M.; Zhang L.; Duan Z. Y.; Liu B. Y. Ring-opening polymerization of ε-caprolactone mediated by a di-zinc complex bearing a macrocyclic thioether-phenolate[OSSO]-type ligand. Polym. Chem., 2022, 13(20), 2971-2979. doi:10.1039/d2py00115bhttp://dx.doi.org/10.1039/d2py00115b
Ghosh S.; Antharjanam P. K. S.; Chakraborty D. Magnesium complexes of the N, O polydentate scaffold: synthesis, structural characterization and polymerization studies. Polymer, 2015, 70, 38-51. doi:10.1016/j.polymer.2015.06.001http://dx.doi.org/10.1016/j.polymer.2015.06.001
马钰琨, 沈勇, 李志波. 高热稳定Lewis酸碱对催化L-丙交酯均聚及与乙交酯共聚的本体开环聚合研究. 高分子学报, 2022, 53(8), 923-932. doi:10.11777/j.issn1000-3304.2022.22042http://dx.doi.org/10.11777/j.issn1000-3304.2022.22042
0
浏览量
186
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构