浏览全部资源
扫码关注微信
1.生态化工国家重点实验室培育基地 青岛科技大学化工学院
2.山东省高等学校生物基高分子材料重点实验室 青岛科技大学高分子科学与工程学院 青岛 266042
E-mail: shenyong@qust.edu.cn
zbli@qust.edu.cn
纸质出版日期:2024-05-20,
收稿日期:2023-12-21,
录用日期:2024-01-30
移动端阅览
王丽颖, 沈勇, 李志波. 生物基δ-己内酯与L-丙交酯顺序开环共聚制备热塑性弹性体及其性质研究. 高分子学报, 2024, 55(5), 582-593
Wang, L. Y.; Shen, Y.; Li, Z. B. Properties study of thermoplastic elastomers prepared by sequential ring-opening copolymerization of bio-based δ-caprolactone and L-lactide. Acta Polymerica Sinica, 2024, 55(5), 582-593
王丽颖, 沈勇, 李志波. 生物基δ-己内酯与L-丙交酯顺序开环共聚制备热塑性弹性体及其性质研究. 高分子学报, 2024, 55(5), 582-593 DOI: 10.11777/j.issn1000-3304.2023.23290.
Wang, L. Y.; Shen, Y.; Li, Z. B. Properties study of thermoplastic elastomers prepared by sequential ring-opening copolymerization of bio-based δ-caprolactone and L-lactide. Acta Polymerica Sinica, 2024, 55(5), 582-593 DOI: 10.11777/j.issn1000-3304.2023.23290.
发展可再生、可降解脂肪族热塑性弹性体有望部分替代目前广泛使用的聚苯乙烯型热塑性弹性体材料,对于解决塑料污染问题具有重要意义. 本工作以商品化的生物基单体
δ
-己内酯和
L
-丙交酯为原料,利用有机碱(
t
-BuP
2
)/脲二元催化体系实现其顺序开环聚合,成功制备得到聚乳酸-
b
-聚(
δ
-己内酯)-
b
-聚乳酸三嵌段共聚物. 这些三嵌段共聚物随软硬段比例不同表现出不同的力学性质. 在硬段体积分数较高时(0.30
<
f
hard
<
0.45),三嵌段共聚物表现出热塑性弹性体性质,具有较高的断裂伸长率和弹性回复率. 在硬段体积分数较小时(
f
hard
<
0.22),三嵌段共聚物与环氧大豆油混合后可作为压敏胶使用.
It is of significance to develop renewable and
biodegradable aliphatic thermoplastic elastomers
which are promising replacement of the widely used polystyrene-based thermoplastic elastomer materials and are expected to partially address the end-of-life issue of plastics. Poly(lactic acid)-
b
-poly(
δ
-caprolactone)-
b
-poly(lactic acid) triblock copolymer was successfully prepared by sequential ring-opening copolymerization of commercial bio-based
δ
-caprolactone and
L
-lactide in the presence of an organobase (
t
-BuP
2
)/urea as binary catalytic system. These triblock copolymers exhibited different microphase separation structures and mechanical properties depending on the composition of soft and hard segments. As the volume fraction of the hard segment (
f
hard
) increased from 0.22 to 0.34
the microphase separation structure of the sample gradually changed from spheres to hexagonally packed cylinders
and finally to lamella. When
f
hard
was in the range of 0.30‒0.45
the triblock copolymers behaved as thermoplastic elastomers (TPEs) with high elongation at break (
ε
b
=600%‒1000%) and good tensile strength (
σ
b
=10-20 MPa). The samples with
f
hard
~0.35 exhibited high elastic recovery (
E
R
~90%)
high resilience (~70%) and low residual strain (
<
10%). When the samples possessed comparable molecular weight of soft segment
the elastic recovery and resilience gradually decreased while the residual strain increased as
f
hard
decreased from 0.34 to 0.22. The triblock copolymers that possessed a relatively lower volume fraction of the hard segment (
f
hard
<
0.22) can be used as pressure-sensitive adhesives after mixing with epoxy soybean oil (ESO). The 180° peel strength of PSA can be further adjusted by changing the composing triblock copo
lymers and the ratio of copolymers to ESO. The 180° peel adhesion tests showed that the peel strength of PSA-1 was (3.0±0.4) N/cm
and that of PSA-2 was (0.3±0.05) N/cm
which can be used as kraft paper tape and post-it note
respectively.
热塑性弹性体压敏胶三嵌段共聚物开环聚合脂肪族聚酯
Thermoplastic elastomersPressure-sensitive adhesivesTriblock copolymerRing-opening polymerizationAliphatic polyester
Schneiderman D. K.; Hillmyer M. A. 50th Anniversary perspective: there is a great future in sustainable polymers. Macromolecules, 2017, 50(10), 3733-3749. doi:10.1021/acs.macromol.7b00293http://dx.doi.org/10.1021/acs.macromol.7b00293
王伟杰, 张彩虹, 黄浩, 刘泽新, 简韩鑫, 杨曙光. 微相分离结合氢键复合构筑弹性体. 高分子学报, 2023, 54(4), 487-495. doi:10.11777/j.issn1000-3304.2022.22314http://dx.doi.org/10.11777/j.issn1000-3304.2022.22314
彭燕, 侯雨佳, 申巧巧, 王辉, 李刚, 黄光速, 吴锦荣. 基于氢键和Diels-Alder键双重网络自修复弹性体的合成与性能. 高分子学报, 2020, 51(2), 158-165. doi:10.11777/j.issn1000-3304.2019.19140http://dx.doi.org/10.11777/j.issn1000-3304.2019.19140
Frick E. M.; Zalusky A. S.; Hillmyer M. A. Characterization of polylactide-b-polyisoprene-b-polylactide thermoplastic elastomers. Biomacromolecules, 2003, 4(2), 216-223. doi:10.1021/bm025628bhttp://dx.doi.org/10.1021/bm025628b
Thermoplastic elastomer market size, share & trends analysis report by application (automotive, electrical & electronics, industrial, medical, consumer goods), by material, by region, and segment forecasts, 2022-2030. Report ID: 978-1-68038-478-9. Grand View Research, 2022-08-17. https://www.grandviewresearch.com/industry-analysis/thermoplastic-elastomers-markethttps://www.grandviewresearch.com/industry-analysis/thermoplastic-elastomers-market.
Bates F. S.; Hillmyer M. A.; Lodge T. P.; Bates C. M.; Delaney K. T.; Fredrickson G. H. Multiblock polymers: panacea or Pandora's box? Science, 2012, 336(6080), 434-440. doi:10.1126/science.1215368http://dx.doi.org/10.1126/science.1215368
扈登文, 张梦梦, 许江平, 朱锦涛. 嵌段共聚物微球结构设计与功能调控. 高分子学报, 2023, 54(6), 818-836. doi:10.11777/j.issn1000-3304.2022.22455http://dx.doi.org/10.11777/j.issn1000-3304.2022.22455
丁芳, 张欢, 丁明明, 石彤非, 李云琦, 安立佳. 聚合物弹性体材料应力-应变关系的理论研究. 高分子学报, 2019, 50(12), 1357-1366. doi:10.11777/j.issn1000-3304.2019.19132http://dx.doi.org/10.11777/j.issn1000-3304.2019.19132
张昊天, 胡晨阳, 李莉莉, 庞烜. 开环聚合催化剂用于脂肪族聚酯合成的研究进展. 高分子学报, 2022, 53(9), 1057-1071. doi:10.11777/j.issn1000-3304.2022.22088http://dx.doi.org/10.11777/j.issn1000-3304.2022.22088
Xiong M. Y.; Schneiderman D. K.; Bates F. S.; Hillmyer M. A.; Zhang K. C. Scalable production of mechanically tunable block polymers from sugar. Proc. Natl. Acad. Sci. USA, 2014, 111(23), 8357-8362. doi:10.1073/pnas.1404596111http://dx.doi.org/10.1073/pnas.1404596111
Watts A.; Kurokawa N.; Hillmyer M. A. Strong, resilient, and sustainable aliphatic polyester thermoplastic elastomers. Biomacromolecules, 2017, 18(6), 1845-1854. doi:10.1021/acs.biomac.7b00283http://dx.doi.org/10.1021/acs.biomac.7b00283
张意, 吕华. 基于羟脯氨酸聚酯的热塑弹性体的合成与性质研究. 高分子学报, 2022, 53(9), 1123-1130. doi:10.11777/j.issn1000-3304.2022.22125http://dx.doi.org/10.11777/j.issn1000-3304.2022.22125
Yang X.; Fan H. Z.; Cai Z. Z.; Zhang Q.; Zhu J. B. Ring-opening polymerization of a benzyl-protected cyclic ester towards functional aliphatic polyester. Chin. J. Chem., 2022, 40(24), 2973-2980. doi:10.1002/cjoc.202200448http://dx.doi.org/10.1002/cjoc.202200448
Xu Z. H.; Niu Y. H.; Yang L.; Xie W. Y.; Li H.; Gan Z. H.; Wang Z. G. Morphology, rheology and crystallization behavior of polylactide composites prepared through addition of five-armed star polylactide grafted multiwalled carbon nanotubes. Polymer, 2010, 51(3), 730-737. doi:10.1016/j.polymer.2009.12.017http://dx.doi.org/10.1016/j.polymer.2009.12.017
Wanamaker C. L.; Bluemle M. J.; Pitet L. M.; O'Leary L. E.; Tolman W. B.; Hillmyer M. A. Consequences of polylactide stereochemistry on the properties of polylactide-polymenthide-polylactide thermoplastic elastomers. Biomacromolecules, 2009, 10(10), 2904-2911. doi:10.1021/bm900721phttp://dx.doi.org/10.1021/bm900721p
Shin J.; Lee Y.; Tolman W. B.; Hillmyer M. A. Thermoplastic elastomers derived from menthide and tulipalin A. Biomacromolecules, 2012, 13(11), 3833-3840. doi:10.1021/bm3012852http://dx.doi.org/10.1021/bm3012852
Martello, M. T.; Hillmyer, M. A. Polylactide-poly(6-methyl-ε-caprolactone)-polylactide thermoplastic elastomers. Macromolecules, 2011, 44(21), 8537-8545. doi:10.1021/ma201063thttp://dx.doi.org/10.1021/ma201063t
Martello M. T.; Schneiderman D. K.; Hillmyer M. A. Synthesis and melt processing of sustainable poly(ε-decalactone)-block-poly(lactide) multiblock thermoplastic elastomers. ACS Sustain. Chem. Eng., 2014, 2(11), 2519-2526. doi:10.1021/sc500412ahttp://dx.doi.org/10.1021/sc500412a
Xu C.; Wang L. Y.; Liu Y. L.; Niu H. N.; Shen Y.; Li Z. B. Rapid and controlled ring-opening (co)polymerization of bio-sourced alkyl-δ-lactones to produce recyclable (co)polyesters and their application as pressure-sensitive adhesives. Macromolecules, 2023, 56(15), 6117-6125. doi:10.1021/acs.macromol.3c00920http://dx.doi.org/10.1021/acs.macromol.3c00920
Buntara T.; Noel S.; Phua P. H.; Melián-Cabrera I.; de Vries J. G.; Heeres H. J. Caprolactam from renewable resources: catalytic conversion of 5-hydroxymethylfurfural into caprolactone. Angew. Chem. Int. Ed., 2011, 50(31), 7083-7087. doi:10.1002/anie.201102156http://dx.doi.org/10.1002/anie.201102156
Li C. J.; Wang L. Y.; Yan Q.; Liu F. S.; Shen Y.; Li Z. B. Rapid and controlled polymerization of bio-sourced δ-caprolactone toward fully recyclable polyesters and thermoplastic elastomers. Angew. Chem. Int. Ed., 2022, 61(16), e202201407. doi:10.1002/anie.202201407http://dx.doi.org/10.1002/anie.202201407
Hewawasam R. S.; Kalana, U. L. D I.; Dharmaratne N. U.; Wright T. J.; Bannin T. J.; Kiesewetter E. T.; Kiesewetter M. K. Bisurea and bisthiourea H-bonding organocatalysts for ring-opening polymerization: cues for the catalyst design. Macromolecules, 2019, 52(23), 9232-9237. doi:10.1021/acs.macromol.9b01875http://dx.doi.org/10.1021/acs.macromol.9b01875
Zhao W. C.; Li C. K.; Yang X.; He J. H.; Pang X.; Zhang Y. T.; Men Y. F.; Chen X. S. One-pot synthesis of supertough, sustainable polyester thermoplastic elastomers using block-like, gradient copolymer as soft midblock. CCS Chem., 2022, 4(4), 1263-1272. doi:10.31635/ccschem.021.202100897http://dx.doi.org/10.31635/ccschem.021.202100897
Gregory G. L.; Sulley G. S.; Carrodeguas L. P.; Chen T. T. D.; Santmarti A.; Terrill N. J.; Lee K. Y.; Williams C. K. Triblock polyester thermoplastic elastomers with semi-aromatic polymer end blocks by ring-opening copolymerization. Chem. Sci., 2020, 11(25), 6567-6581. doi:10.1039/d0sc00463dhttp://dx.doi.org/10.1039/d0sc00463d
Schneiderman D. K.; Hillmyer M. A. Aliphatic polyester block polymer design. Macromolecules, 2016, 49(7), 2419-2428. doi:10.1021/acs.macromol.6b00211http://dx.doi.org/10.1021/acs.macromol.6b00211
Zhou W.; Xu C.; Liu Y. L.; Shen Y. Preparation of high-molecular-weight polylactide by ring-opening polymerization of L-lactide using base/bisurea binary organocatalyst. J. Polym. Res., 2023, 30(6), 230. doi:10.1007/s10965-023-03621-whttp://dx.doi.org/10.1007/s10965-023-03621-w
Pan P. J.; Yang J. J.; Shan G. R.; Bao Y. Z.; Weng Z. X.; Cao A. M.; Yazawa K.; Inoue Y. Temperature-variable FTIR and solid-state 13C-NMR investigations on crystalline structure and molecular dynamics of polymorphic poly(L-lactide) and poly(L-lactide)/poly(D-lactide) stereo complex. Macromolecules, 2012, 45(1), 189-197. doi:10.1021/ma201906ahttp://dx.doi.org/10.1021/ma201906a
Lynd N. A.; Meuler A. J.; Hillmyer M. A. Polydispersity and block copolymer self-assembly. Prog. Polym. Sci., 2008, 33(9), 875-893. doi:10.1016/j.progpolymsci.2008.07.003http://dx.doi.org/10.1016/j.progpolymsci.2008.07.003
He W. N.; Xu J. T. Crystallization assisted self-assembly of semicrystalline block copolymers. Prog. Polym. Sci., 2012, 37(10), 1350-1400. doi:10.1016/j.progpolymsci.2012.05.002http://dx.doi.org/10.1016/j.progpolymsci.2012.05.002
Sun S. M.; Li M. L.; Liu A. A review on mechanical properties of pressure sensitive adhesives. Int. J. Adhes. Adhes., 2013, 41, 98-106. doi:10.1016/j.ijadhadh.2012.10.011http://dx.doi.org/10.1016/j.ijadhadh.2012.10.011
Ding K. Y.; John A.; Shin J.; Lee Y.; Quinn T.; Tolman W. B.; Hillmyer M. A. High-performance pressure-sensitive adhesives from renewable triblock copolymers. Biomacromolecules, 2015, 16(8), 2537-2539. doi:10.1021/acs.biomac.5b00754http://dx.doi.org/10.1021/acs.biomac.5b00754
Creton C. Pressure-sensitive adhesives: an introductory course. MRS Bull., 2003, 28(6), 434-439. doi:10.1557/mrs2003.124http://dx.doi.org/10.1557/mrs2003.124
Lee S. J.; Lee K.; Kim Y. W.; Shin J. Preparation and characterization of a renewable pressure-sensitive adhesive system derived from ε-decalactone, L-lactide, epoxidized soybean oil, and rosin ester. ACS Sustainable Chem. Eng., 2015, 3(9), 2309-2320. doi:10.1021/acssuschemeng.5b00580http://dx.doi.org/10.1021/acssuschemeng.5b00580
Badía A.; Agirre A.; Barandiaran M. J.; Leiza J. R. Removable biobased waterborne pressure-sensitive adhesives containing mixtures of isosorbide methacrylate monomers. Biomacromolecules, 2020, 21(11), 4522-4531. doi:10.1021/acs.biomac.0c00474http://dx.doi.org/10.1021/acs.biomac.0c00474
Chen T. T. D.; Carrodeguas L. P.; Sulley G. S.; Gregory G. L.; Williams C. K. Bio-based and degradable block polyester pressure-sensitive adhesives. Angew. Chem. Int. Ed., 2020, 59(52), 23450-23455. doi:10.1002/anie.202006807http://dx.doi.org/10.1002/anie.202006807
0
浏览量
199
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构