浏览全部资源
扫码关注微信
聚合物分子工程国家重点实验室 复旦大学高分子科学系 上海 200438
[ "朱亮亮,男,1982年生. 复旦大学高分子科学系研究员,博士生导师. 2005年获得浙江大学学士学位,2011年获得华东理工大学博士学位. 2011~2015年分别在新加坡南洋理工大学和美国哥伦比亚大学从事博士后研究工作. 2015年5月入职复旦大学开展独立研究工作. 入选国家高层次青年人才计划资助. 主要研究方向为有机高分子光功能材料." ]
纸质出版日期:2024-07-20,
网络出版日期:2024-04-07,
收稿日期:2023-12-25,
录用日期:2024-02-06
移动端阅览
刘谋为, 朱亮亮. 光激发诱导组装策略在大分子组装中的应用. 高分子学报, 2024, 55(7), 802-813
Liu, M. W.; Zhu, L. L. Application of photoex-induced assembly strategies to macromolecular assembly. Acta Polymerica Sinica, 2024, 55(7), 802-813
刘谋为, 朱亮亮. 光激发诱导组装策略在大分子组装中的应用. 高分子学报, 2024, 55(7), 802-813 DOI: 10.11777/j.issn1000-3304.2023.23295.
Liu, M. W.; Zhu, L. L. Application of photoex-induced assembly strategies to macromolecular assembly. Acta Polymerica Sinica, 2024, 55(7), 802-813 DOI: 10.11777/j.issn1000-3304.2023.23295.
在分子组装领域,光控自组装是调节分子有序性、多尺度结构和光电特性的一种智能策略. 然而,传统光控自组装是通过光化学反应诱导分子结构变化的光化学过程来实施. 由于副反应的存在和有限的转化率,光控自组装形成的纳米结构和形态往往难以预测. 相反,仅利用分子从基态到激发态的构象变化的光物理过程实现激发态组装则能够避免以上缺点,并能够进一步促进整个材料体系的协同组装或相变. 本文着重探讨了以多硫芳烃为基元的光激发诱导组装(photoexcitation-induced assembly
PEIA)策略. 多硫芳烃能够产生从基态到激发态的重大分子构象转变,这种转变有利于形成分子间相互作用,进而推动分子运动、聚集和组装. 系统介绍在分子水平上探索多硫芳烃的PEIA进展,进一步证明多硫芳烃的PEIA可以协同驱动聚合物体系中的分子运动和相变,并对PEIA未来发展所面临的关键问题和重要挑战进行了展望.
In the field of molecular assembly
photocontrolled self-assembly is an intelligent strategy to regulate molecular ordering
multiscale structure and optoelectronic properties. However
conventional photocontrolled self-assembly is implemented through a photochemical process in which photochemical reactions induce structural changes in molecules. The nanostructures and morphologies formed by photocontrolled self-assembly are often unpredictable due to the presence of side reactions and limited conversion rates. On the contrary
assembly by photophysical processes that only utilize the conformational changes of molecules from the ground state to the excited state can avoid the above drawbacks and can further promote the synergistic assembly or phase transition of the whole material system. In this paper
we focus on the photoexcitation-induced assembly (PEIA) strategy using polysulfide aromatic hydrocarbons (PAHs) as the building blocks. PAHs are capable of generating significant molecular conformational transitions from the ground state to the excited state
which are favorable for the formation of intermolecular interactions that drive molecular motions
aggregation
and assembly. In this paper
we systematically introduce the progress of exploring PEIA of polysulfide aromatics at the molecular level
further demonstrate that PEIA of polysulfide aromatics can synergistically drive molecular motions and phase transitions in polymer systems
and provide an outlook on the key issues and important challenges for the future development of PEIA.
激发态构象多硫芳烃光诱导自组装磷光
Excited-state conformationPersulfurated arenesPhotoinduced self-assemblyPhosphorescence
Mendes A. C.; Baran E. T.; Reis R. L.; Azevedo H. S. Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2013, 5(6), 582-612. doi:10.1002/wnan.1238http://dx.doi.org/10.1002/wnan.1238
Xu P. F.; Gao L.; Cai C. H.; Lin J. P.; Wang L. Q.; Tian X. H. Polymeric toroidal self-assemblies: diverse formation mechanisms and functions. Adv. Funct. Mater., 2022, 32(1), 2106036. doi:10.1002/adfm.202106036http://dx.doi.org/10.1002/adfm.202106036
Feng C.; Huang X. Y. Polymer brushes: efficient synthesis and applications. Acc. Chem. Res., 2018, 51(9), 2314-2323. doi:10.1021/acs.accounts.8b00307http://dx.doi.org/10.1021/acs.accounts.8b00307
Su Z. B.; Zhang R. M.; Yan X. Y.; Guo Q. Y.; Huang J. H.; Shan W. P.; Liu Y. C.; Liu T.; Huang M. J.; Cheng S. Z. D. The role of architectural engineering in macromolecular self-assemblies via non-covalent interactions: a molecular LEGO approach. Prog. Polym. Sci., 2020, 103, 101230. doi:10.1016/j.progpolymsci.2020.101230http://dx.doi.org/10.1016/j.progpolymsci.2020.101230
Palagi S.; Mark A. G.; Reigh S. Y.; Melde K.; Qiu T.; Zeng H.; Parmeggiani C.; Martella D.; Sanchez-Castillo A.; Kapernaum N.; Giesselmann F.; Wiersma D. S.; Lauga E.; Fischer P. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat. Mater., 2016, 15(6), 647-653. doi:10.1038/nmat4569http://dx.doi.org/10.1038/nmat4569
Darabi A.; Jessop P. G.; Cunningham M. F. CO2-responsive polymeric materials: synthesis, self-assembly, and functional applications. Chem. Soc. Rev., 2016, 45(15), 4391-4436. doi:10.1039/c5cs00873ehttp://dx.doi.org/10.1039/c5cs00873e
Qiao S. L.; Mamuti M.; An H. W.; Wang H. Thermoresponsive polymer assemblies: from molecular design to theranostics application. Prog. Polym. Sci., 2022, 131, 101578. doi:10.1016/j.progpolymsci.2022.101578http://dx.doi.org/10.1016/j.progpolymsci.2022.101578
Kundu P. K.; Samanta D.; Leizrowice R.; Margulis B.; Zhao H.; Börner M.; Udayabhaskararao T.; Manna D.; Klajn R. Light-controlled self-assembly of non-photoresponsive nanoparticles. Nat. Chem., 2015, 7(8), 646-652. doi:10.1038/nchem.2303http://dx.doi.org/10.1038/nchem.2303
Lubbe A. S.; Szymanski W.; Feringa B. L. Recent developments in reversible photoregulation of oligonucleotide structure and function. Chem. Soc. Rev., 2017, 46(4), 1052-1079. doi:10.1039/c6cs00461jhttp://dx.doi.org/10.1039/c6cs00461j
Ragazzon G.; Baroncini M.; Silvi S.; Venturi M.; Credi A. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nat. Nanotechnol., 2015, 10(1), 70-75. doi:10.1038/nnano.2014.260http://dx.doi.org/10.1038/nnano.2014.260
Qi J.; Chen C.; Zhang X. Y.; Hu X. L.; Ji S. L.; Kwok R. T. K.; Lam J. W. Y.; Ding D.; Tang B. Z. Light-driven transformable optical agent with adaptive functions for boosting cancer surgery outcomes. Nat. Commun., 2018, 9(1), 1848. doi:10.1038/s41467-018-04222-8http://dx.doi.org/10.1038/s41467-018-04222-8
Shi Z. T.; Hu Y. X.; Hu Z. B.; Zhang Q.; Chen S. Y.; Chen M.; Yu J. J.; Yin G. Q.; Sun H. T.; Xu L.; Li X. P.; Feringa B. L.; Yang H. B.; Tian H.; Qu D. H. Visible-light-driven rotation of molecular motors in discrete supramolecular metallacycles. J. Am. Chem. Soc., 2021, 143(1), 442-452. doi:10.1021/jacs.0c11752http://dx.doi.org/10.1021/jacs.0c11752
Zhu L. L.; Li X.; Zhang Q.; Ma X.; Li M. H.; Zhang H. C.; Luo Z.; Ågren H.; Zhao Y. L. Unimolecular photoconversion of multicolor luminescence on hierarchical self-assemblies. J. Am. Chem. Soc., 2013, 135(13), 5175-5182. doi:10.1021/ja400456hhttp://dx.doi.org/10.1021/ja400456h
Gohy J. F.; Zhao Y. Photo-responsive block copolymer micelles: design and behavior. Chem. Soc. Rev., 2013, 42(17), 7117-7129. doi:10.1039/c3cs35469ehttp://dx.doi.org/10.1039/c3cs35469e
Kim J.; Yun H.; Lee Y. J.; Lee J.; Kim S. H.; Ku K. H.; Kim B. J. Photoswitchable surfactant-driven reversible shape- and color-changing block copolymer particles. J. Am. Chem. Soc., 2021, 143(33), 13333-13341. doi:10.1021/jacs.1c06377http://dx.doi.org/10.1021/jacs.1c06377
Chen Y. H.; Wang Z. W.; He Y. J.; Yoon Y. J.; Jung J.; Zhang G. Z.; Lin Z. Q. Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles. Proc. Natl. Acad. Sci. USA, 2018, 115(7), E1391-E1400. doi:10.1073/pnas.1714748115http://dx.doi.org/10.1073/pnas.1714748115
Cheng H. B.; Zhang S. C.; Bai E. Y.; Cao X. Q.; Wang J. Q.; Qi J.; Liu J.; Zhao J.; Zhang L. Q.; Yoon J. Future-oriented advanced diarylethene photoswitches: from molecular design to spontaneous assembly systems. Adv. Mater., 2022, 34(16), e2108289. doi:10.1002/adma.202108289http://dx.doi.org/10.1002/adma.202108289
Li M. Q.; Zhu W. H. Sterically hindered diarylethenes with a benzobis(thiadiazole) bridge: enantiospecific transformation and reversible photosuperstructures. Acc. Chem. Res., 2022, 55(21), 3136-3149. doi:10.1021/acs.accounts.2c00419http://dx.doi.org/10.1021/acs.accounts.2c00419
Cheng H. B.; Zhang S. C.; Qi J.; Liang X. J.; Yoon J. Advances in application of azobenzene as a trigger in biomedicine: molecular design and spontaneous assembly. Adv. Mater., 2021, 33(26), e2007290. doi:10.1002/adma.202007290http://dx.doi.org/10.1002/adma.202007290
Wang X. H.; Pan G. C.; Ren H. X.; Li J. S.; Xu B.; Tian W. J. Reversible photoswitching between fluorescence and room temperature phosphorescence by manipulating excited state dynamics in molecular aggregates. Angew. Chem. Int. Ed., 2022, 61(4), e202114264. doi:10.1002/anie.202114264http://dx.doi.org/10.1002/anie.202114264
Hu H.; Cheng X.; Ma Z. M.; Sijbesma R. P.; Ma Z. Y. Polymer mechanochromism from force-tuned excited-state intramolecular proton transfer. J. Am. Chem. Soc., 2022, 144(22), 9971-9979. doi:10.1021/jacs.2c03056http://dx.doi.org/10.1021/jacs.2c03056
Man Z. W.; Lv Z.; Xu Z. Z.; Liu M. H.; He J. P.; Liao Q.; Yao J. N.; Peng Q.; Fu H. B. Excitation-wavelength-dependent organic long-persistent luminescence originating from excited-state long-range proton transfer. J. Am. Chem. Soc., 2022, 144(28), 12652-12660. doi:10.1021/jacs.2c01248http://dx.doi.org/10.1021/jacs.2c01248
Xu S.; Chen R. F.; Zheng C.; Huang W. Excited state modulation for organic afterglow: materials and applications. Adv. Mater., 2016, 28(45), 9920-9940. doi:10.1002/adma.201602604http://dx.doi.org/10.1002/adma.201602604
Baumgartner T.; Réau R. Organophosphorus π-conjugated materials. Chem. Rev., 2006, 106(11), 4681-4727. doi:10.1021/cr040179mhttp://dx.doi.org/10.1021/cr040179m
Dong H. Y.; Zhang C. H.; Yao J. N.; Zhao Y. S. Organic composite materials: understanding and manipulating excited states toward higher light-emitting performance. Aggregate, 2021, 2(4), e103. doi:10.1002/agt2.103http://dx.doi.org/10.1002/agt2.103
Weng T. Y.; Baryshnikov G.; Deng C.; Li X. P.; Wu B.; Wu H. W.; Ågren H.; Zou Q.; Zeng T.; Zhu L. L. A fluorescence-phosphorescence-phosphorescence triple-channel emission strategy for full-color luminescence. Small, 2020, 16(7), e1906475. doi:10.1002/smll.201906475http://dx.doi.org/10.1002/smll.201906475
Wu H. W.; Chi W. J.; Baryshnikov G.; Wu B.; Gong Y. F.; Zheng D. X.; Li X.; Zhao Y. L.; Liu X. G.; Ågren H.; Zhu L. L. Crystal multi-conformational control through deformable carbon-sulfur bond for singlet-triplet emissive tuning. Angew. Chem. Int. Ed., 2019, 58(13), 4328-4333. doi:10.1002/anie.201900703http://dx.doi.org/10.1002/anie.201900703
Wu H. W.; Zhou Y. Y.; Yin L. Y.; Hang C.; Li X.; Ågren H.; Yi T.; Zhang Q.; Zhu L. L. Helical self-assembly-induced singlet-triplet emissive switching in a mechanically sensitive system. J. Am. Chem. Soc., 2017, 139(2), 785-791. doi:10.1021/jacs.6b10550http://dx.doi.org/10.1021/jacs.6b10550
Jia X. Y.; Yue B. B.; Zhou L. L.; Niu X. L.; Wu W. L.; Zhu L. L. Fluorescence to multi-colored phosphorescence interconversion of a novel, asterisk-shaped luminogen via multiple external stimuli. Chem. Commun., 2020, 56(31), 4336-4339. doi:10.1039/d0cc00371ahttp://dx.doi.org/10.1039/d0cc00371a
Wu H. W.; Hang C.; Li X.; Yin L. Y.; Zhu M. J.; Zhang J.; Zhou Y. Y.; Ågren H.; Zhang Q.; Zhu L. L. Molecular stacking dependent phosphorescence-fluorescence dual emission in a single luminophore for self-recoverable mechanoconversion of multicolor luminescence. Chem. Commun., 2017, 53(18), 2661-2664. doi:10.1039/c6cc04901jhttp://dx.doi.org/10.1039/c6cc04901j
Wu H. W.; Zhao P.; Li X.; Chen W. B.; Ågren H.; Zhang Q.; Zhu L. L. Tuning for visible fluorescence and near-infrared phosphorescence on a unimolecular mechanically sensitive platform via adjustable CH-π interaction. ACS Appl. Mater. Interfaces, 2017, 9(4), 3865-3872. doi:10.1021/acsami.6b15939http://dx.doi.org/10.1021/acsami.6b15939
Wu B.; Wu H. W.; Gong Y. F.; Li A. Z.; Jia X. Y.; Zhu L. L. A chiral single-component sol-gel platform with highly integrated optical properties. J. Mater. Chem. C, 2021, 9(12), 4275-4280. doi:10.1039/d1tc00614bhttp://dx.doi.org/10.1039/d1tc00614b
Weng T. Y.; Zou Q.; Zhang M.; Wu B.; Baryshnikov G. V.; Shen S.; Chen X. Y.; Ågren H.; Jia X. Y.; Zhu L. L. Enhancing the operability of photoexcitation-controlled aggregation-induced emissive molecules in the organic phase. J. Phys. Chem. Lett., 2021, 12(26), 6182-6189. doi:10.1021/acs.jpclett.1c01535http://dx.doi.org/10.1021/acs.jpclett.1c01535
Gong Y. F.; Zhang M.; Jia X. Y.; Yue B. B.; Zhu L. L. Rigid polymer network-based autonomous photoswitches working in the solid state encoded by room-temperature phosphorescence. Langmuir, 2021, 37(49), 14398-14406. doi:10.1021/acs.langmuir.1c02347http://dx.doi.org/10.1021/acs.langmuir.1c02347
Shen S.; Baryshnikov G.; Yue B. B.; Wu B.; Li X. P.; Zhang M.; Ågren H.; Zhu L. L. Manipulating crystals through photoexcitation-induced molecular realignment. J. Mater. Chem. C, 2021, 9(35), 11707-11714. doi:10.1039/d1tc01605ahttp://dx.doi.org/10.1039/d1tc01605a
Gu J.; Yue B. B.; Baryshnikov G. V.; Li Z. Y.; Zhang M.; Shen S.; Ågren H.; Zhu L. L. Visualizing material processing via photoexcitation-controlled organic-phase aggregation-induced emission. Research, 2021, 2021, 9862093. doi:10.34133/2021/9862093http://dx.doi.org/10.34133/2021/9862093
Wang J.; Zhang M.; Han S. L.; Zhu L. L.; Jia X. Y. Multiple-stimuli-responsive multicolor luminescent self-healing hydrogel and application in information encryption and bioinspired camouflage. J. Mater. Chem. C, 2022, 10(41), 15565-15572. doi:10.1039/d2tc03072ahttp://dx.doi.org/10.1039/d2tc03072a
Xu X. Y.; Zhang M.; Li Z. Y.; Ye D. F.; Gou L. Z.; Zou Q.; Zhu L. L. Highly efficient light-induced self-assembly of gold nanoparticles promoted by photoexcitation-induced aggregatable ligands. Chem. Commun., 2023, 59(4), 418-421. doi:10.1039/d2cc06188khttp://dx.doi.org/10.1039/d2cc06188k
Shen S.; Baryshnikov G. V.; Xie Q. S.; Wu B.; Lv M.; Sun H.; Li Z. Y.; Ågren H.; Chen J. Q.; Zhu L. L. Making multi-twisted luminophores produce persistent room-temperature phosphorescence. Chem. Sci., 2022, 14(4), 970-978. doi:10.1039/d2sc05741ghttp://dx.doi.org/10.1039/d2sc05741g
Jia X. Y.; Shao C. C.; Bai X.; Zhou Q. H.; Wu B.; Wang L. J.; Yue B. B.; Zhu H. M.; Zhu L. L. Photoexcitation-controlled self-recoverable molecular aggregation for flicker phosphorescence. Proc. Natl. Acad. Sci. USA, 2019, 116(11), 4816-4821. doi:10.1073/pnas.1821991116http://dx.doi.org/10.1073/pnas.1821991116
Yang J.; Zhen X.; Wang B.; Gao X. M.; Ren Z. C.; Wang J. Q.; Xie Y. J.; Li J. R.; Peng Q.; Pu K. Y.; Li Z. The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nat. Commun., 2018, 9(1), 840. doi:10.1038/s41467-018-03236-6http://dx.doi.org/10.1038/s41467-018-03236-6
Gu L.; Shi H. F.; Gu M. X.; Ling K.; Ma H. L.; Cai S. Z.; Song L. L.; Ma C. Q.; Li H.; Xing G. C.; Hang X. C.; Li J. W.; Gao Y. R.; Yao W.; Shuai Z. G.; An Z. F.; Liu X. G.; Huang W. Dynamic ultralong organic phosphorescence by photoactivation. Angew. Chem. Int. Ed., 2018, 57(28), 8425-8431. doi:10.1002/anie.201712381http://dx.doi.org/10.1002/anie.201712381
Zhao W. J.; Liu Z. Y.; Yu J.; Lu X. F.; Lam J. W. Y.; Sun J. Y.; He Z. K.; Ma H. L.; Tang B. Z. Turning on solid-state luminescence by phototriggered subtle molecular conformation variations. Adv. Mater., 2021, 33(2), e2006844. doi:10.1002/adma.202006844http://dx.doi.org/10.1002/adma.202006844
Zhang H. K.; Du L. L.; Wang L.; Liu J. K.; Wan Q.; Kwok R. T. K.; Lam J. W. Y.; Phillips D. L.; Tang B. Z. Visualization and manipulation of molecular motion in the solid state through photoinduced clusteroluminescence. J. Phys. Chem. Lett., 2019, 10(22), 7077-7085. doi:10.1021/acs.jpclett.9b02752http://dx.doi.org/10.1021/acs.jpclett.9b02752
Yue B. B.; Feng X. C.; Wang C. S.; Zhang M.; Lin H.; Jia X. Y.; Zhu L. L. In situ regulation of microphase separation-recognized circularly polarized luminescence via photoexcitation-induced molecular aggregation. ACS Nano, 2022, 16(10), 16201-16210. doi:10.1021/acsnano.2c05056http://dx.doi.org/10.1021/acsnano.2c05056
Yue B. B.; Jia X. Y.; Baryshnikov G. V.; Jin X.; Feng X. C.; Lu Y. L.; Luo M. K.; Zhang M.; Shen S.; Ågren H.; Zhu L. L. Photoexcitation-based supramolecular access to full-scale phase-diagram structures through in situ phase-volume ratio phototuning. Angew. Chem. Int. Ed., 2022, 61(43), 2209777. doi:10.1002/anie.202209777http://dx.doi.org/10.1002/anie.202209777
0
浏览量
169
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构