浏览全部资源
扫码关注微信
1.南京邮电大学信息材料与纳米技术研究院 有机电子与信息显示国家重点实验室 分子系统与有机器件中心 南京 210023
2.河南大学柔性电子学院 河南省柔性电子产业技术研究院 郑州 450046
E-mail: iammnyu@njupt.edu.cn
iamqyfeng@njupt.edu.cn
iamlhxie@njupt.edu.cn
纸质出版日期:2024-06-20,
网络出版日期:2024-03-27,
收稿日期:2023-12-27,
录用日期:2024-02-02
移动端阅览
李昊, 罗曼曼, 祝守加, 朱爱云, 虞梦娜, 冯全友, 解令海. 基于并环螺芴氧杂蒽类单体的链柔性化蓝光聚合物及其柔性有机发光二极管. 高分子学报, 2024, 55(6), 673-687
Li, H.; Luo, M. M.; Zhu, S. J.; Zhu, A. Y.; Yu, M. N.; Feng, Q. Y.; Xie, L. H. Chain flexible of blue light-emitting polymer based on parallel spiro-fluorenexanthene monomers and flexible organic light-emitting diodes. Acta Polymerica Sinica, 2024, 55(6), 673-687
李昊, 罗曼曼, 祝守加, 朱爱云, 虞梦娜, 冯全友, 解令海. 基于并环螺芴氧杂蒽类单体的链柔性化蓝光聚合物及其柔性有机发光二极管. 高分子学报, 2024, 55(6), 673-687 DOI: 10.11777/j.issn1000-3304.2023.23298.
Li, H.; Luo, M. M.; Zhu, S. J.; Zhu, A. Y.; Yu, M. N.; Feng, Q. Y.; Xie, L. H. Chain flexible of blue light-emitting polymer based on parallel spiro-fluorenexanthene monomers and flexible organic light-emitting diodes. Acta Polymerica Sinica, 2024, 55(6), 673-687 DOI: 10.11777/j.issn1000-3304.2023.23298.
螺芴氧杂蒽作为一类重要的宽带隙蓝光材料功能砌块,常被用于构筑具有优异光电性能和器件稳定性的聚合物半导体,但螺芴氧杂蒽类聚合物柔性化的构筑却很少被报道. 基于此,本文报道了高效合成单螺环/并环螺芴氧杂蒽类单体及其蓝光聚合物,包括均聚物PC
8
SFX-Homo、PDSFX-Homo和共聚物PC
8
SFX-Co、PDSFX-Co,其中并环聚合物(PLQY
sol
=88.2%,EQE
max
=0.52%)无论是发光效率还是柔性器件性能均明显优于单螺环体系(PLQY
sol
=11.1%,EQE
max
=0.17%). 且并环聚合物表现出更低的内部应力. 同时通过主链柔性化策略引入柔性链段共聚在获得更优柔性的同时能够获得更优异的发光性能和更好的柔性发光二极管器件性能. 该工作为构建柔性电子应用的宽带隙深蓝光聚合物及其柔性发光显示器件应用提供了新的思路.
Polymer semiconductor has been widely concerned because of its advantages such as easy to adjust structure and large area solution processing
which can meet the needs of light
thin
soft and transparent flexible electrons. Spiro-fluorenexanthene
as an important functional block of wide-band gap blue light materials
which is often used to construct polymer semiconductors with
excellent photoelectric properties and device stability. However
the construction of flexible spiro-fluorenexanthene polymers has rarely been reported. Based on this
this paper reports the efficient synthesis of single/parallel spiro-fluorenexanthene monomers and their blue light-emitting polymers
which include homopolymer PC
8
SFX-Homo
PDSFX-Homo and copolymers PC
8
SFX-Co and PDSFX-Co. The parallel spiro-fluorenexanthene polymer (PLQY
sol
=88.2%
EQE
max
=0.52%) is significantly superior to the single spiro-fluorenexanthene system (PLQY
sol
=11.1% EQE
max
=0.17%) in terms of luminous efficiency and flexible device performance. Moreover
the parallel spiro-fluorenexanthene polymer exhibit lower internal stresses. At the same time
introducing the flexible chain segment copolymerization through the main chain flexibility strategy can obtain better flexibility and performance of flexible LED devices. This work provides a new idea for the construction of wide-band gap deep blue light-emitting polymer for the application of flexible electronic and flexible light-emitting display devices.
螺芴氧杂蒽蓝光聚合物链柔性化力学行为柔性有机发光二极管
Spiro-fluorenexantheneBlue light-emitting polymerChain flexibilityMechanical behaviorFlexible organic light-emitting diodes
Cao H. T.; Hou P. F.; Yu W. J.; Gao Y.; Li B.; Feng Q. Y.; Zhang H.; Wang S. S.; Su Z. M.; Xie L. H. Enhanced efficiency of exciplex emission from a 9-phenylfluorene derivative. ACS Appl. Mater. Interfaces, 2023, 15(5), 7236-7246. doi:10.1021/acsami.2c22266http://dx.doi.org/10.1021/acsami.2c22266
Li J.; Zhao F. H.; Nan F. C.; Wang J.; Zhang Y. X.; Liang K.; Xue X. K.; Chen T. J.; Kong L.; Ge J. C.; Wang P. F. Polythiophene derivatives carbonized polymer dots: aggregation induced solid-state fluorescence emission. Chin. J. Chem., 2023, 41(16), 1950-1956. doi:10.1002/cjoc.202300018http://dx.doi.org/10.1002/cjoc.202300018
Choi D. K.; Kim D. H.; Lee C. M.; Hafeez H.; Sarker S.; Yang J. S.; Chae H. J.; Jeong G. W.; Choi D. H.; Kim T. W.; Yoo S.; Song J.; Ma B. S.; Kim T. S.; Kim C. H.; Lee H. J.; Lee J. W.; Kim D.; Bae T. S.; Yu S. M.; Kang Y. C.; Park J.; Kim K. H.; Sujak M.; Song M.; Kim C. S.; Ryu S. Y. Highly efficient, heat dissipating, stretchable organic light-emitting diodes based on a MoO3/Au/MoO3 electrode with encapsulation. Nat. Commun., 2021, 12(1), 2864. doi:10.1038/s41467-021-27720-8http://dx.doi.org/10.1038/s41467-021-27720-8
Du R. M.; Duan C. B.; Li Y.; Zhang J.; Han C. M.; Xu H. Spirobicyclic host material with pseudo-intramolecular charge transfer: improving color purity of high-performance pure-blue and white thermally activated delayed fluorescence diodes. Chem. Eng. J., 2019, 374, 471-478. doi:10.1016/j.cej.2019.05.192http://dx.doi.org/10.1016/j.cej.2019.05.192
Feng Q. Y.; Qian Y.; Wang H. J.; Hou W.; Peng X. Z.; Xie S. L.; Wang S. S.; Xie L. H. Donor arylmethylation toward horizontally oriented TADF emitters for efficient electroluminescence with 37% external quantum efficiency. Adv. Opt. Mater., 2022, 10(10), 2102441. doi:10.1002/adom.202102441http://dx.doi.org/10.1002/adom.202102441
Yang J.; Fang M. M.; Li Z. Stimulus-responsive room temperature phosphorescence materials: internal mechanism, design strategy, and potential application. Acc. Mater. Res., 2021, 2(8), 644-654. doi:10.1021/accountsmr.1c00084http://dx.doi.org/10.1021/accountsmr.1c00084
Li J.; Ding D. X.; Tao Y. T.; Wei Y.; Chen R. F.; Xie L. H.; Huang W.; Xu H. A significantly twisted spirocyclic phosphine oxide as a universal host for high-efficiency full-color thermally activated delayed fluorescence diodes. Adv. Mater., 2016, 28(16), 3122-3130. doi:10.1002/adma.201506286http://dx.doi.org/10.1002/adma.201506286
Chen J. X.; Wang H.; Xiao Y. F.; Wang K.; Zheng M. H.; Chen W. C.; Zhou L.; Hu D. H.; Huo Y. P.; Lee C. S.; Zhang X. H. Optimizing intermolecular interactions and energy level alignments of red TADF emitters for high-performance organic light-emitting diodes. Small, 2022, 18(21), e2201548. doi:10.1002/smll.202201548http://dx.doi.org/10.1002/smll.202201548
Li Y. C.; Wang Z. H.; Cai X. Y.; Liu K. K.; Dong J. Q.; Chang S.; Su S. J. Spiro[fluorene-9,9'-thioxanthene]core based host materials for thermally activated delayed fluorescence devices. Dyes Pigm., 2019, 163, 249-256. doi:10.1016/j.dyepig.2018.12.001http://dx.doi.org/10.1016/j.dyepig.2018.12.001
Shiu Y. J.; Cheng Y. C.; Tsai W. L.; Wu C. C.; Chao C. T.; Lu C. W.; Chi Y.; Chen Y. T.; Liu S. H.; Chou P. T. Pyridyl pyrrolide boron complexes: the facile generation of thermally activated delayed fluorescence and preparation of organic light-emitting diodes. Angew. Chem., 2016, 128(9), 3069-3073. doi:10.1002/ange.201509231http://dx.doi.org/10.1002/ange.201509231
Wakchaure V. C.; Veer S. D.; Nidhankar A. D.; Kumar V.; Narayanan A.; Babu S. S. Polymerizable solvent-free organic liquids: a new approach for large area flexible and foldable luminescent films. Angew. Chem. Int. Ed., 2023, 62(34), e202307381. doi:10.1002/anie.202307381http://dx.doi.org/10.1002/anie.202307381
Tan H. J.; Yang G. X.; Deng Y. L.; Cao C.; Tan J. H.; Zhu Z. L.; Chen W. C.; Xiong Y.; Jian J. X.; Lee C. S.; Tong Q. X. Deep-blue OLEDs with Rec.2020 blue gamut compliance and EQE over 22% achieved by conformation engineering. Adv. Mater., 2022, 34(18), e2200537. doi:10.1002/adma.202200537http://dx.doi.org/10.1002/adma.202200537
Sun N.; Gao H.; Sun L. L.; An J. X.; Xu M.; Sun C.; Han Y. M.; Lin J. Y.; Cai J. L.; Ni M. J.; He L. L.; Yang J. H.; Wang Z. L.; Bai L. B.; Zhang X. W.; Wei Q.; Ding X. H.; Yin C. R.; Xie L. H.; Huang W. Enhancement of morphological and emission stability of deep-blue small molecular emitter via a universal side-chain coupling strategy for optoelectronic device. Chin. Chem. Lett., 2022, 33(2), 835-841. doi:10.1016/j.cclet.2021.07.069http://dx.doi.org/10.1016/j.cclet.2021.07.069
Wang S. S.; Liu Y. R.; Yu X.; Zhou Y.; Zhong T. T.; Li Y. T.; Xie L. H.; Huang W. Supramolecular non-helical one-dimensional channels and microtubes assembled from enantiomers of difluorenol. Angew. Chem. Int. Ed., 2021, 60(8), 3979-3983. doi:10.1002/anie.202012548http://dx.doi.org/10.1002/anie.202012548
Jiang Z.; Abbasi B. B. A.; Aloko S.; Mokhtari F.; Spinks G. M. Ultra-soft organogel artificial muscles exhibiting high power density, large stroke, fast response and long-term durability in air. Adv. Mater., 2023, 35(29), e2210419. doi:10.1002/adma.202370206http://dx.doi.org/10.1002/adma.202370206
Xia G. Q.; Qu C.; Zhu Y. L.; Ye J. J.; Ye K. Q.; Zhang Z. L.; Wang Y. A TADF emitter featuring linearly arranged spiro-donor and spiro-acceptor groups: efficient nondoped and doped deep-blue OLEDs with CIEy 0.1. Angew. Chem. Int. Ed, 2021, 60(17), 9598-9603. doi:10.1002/anie.202100423http://dx.doi.org/10.1002/anie.202100423
Lee D. H.; Son H. W.; Le T. N.; Park E. Y.; Kim J. H.; Suh M. C. Effect of host polarity on efficiency of thermally activated delayed fluorescent and hyperfluorescent organic light emitting devices. J. Ind. Eng. Chem., 2023, 117, 140-148. doi:10.1016/j.jiec.2022.09.049http://dx.doi.org/10.1016/j.jiec.2022.09.049
Yu L.; Yang C. L. Multipath exciton harvesting in diazine-based luminescent materials and their applications for organic light-emitting diodes. J. Mater. Chem. C, 2021, 9(48), 17265-17286. doi:10.1039/d1tc04397hhttp://dx.doi.org/10.1039/d1tc04397h
Kim T.; Kim J. H.; Kang T. E.; Lee C.; Kang H.; Shin M.; Wang C.; Ma B. W.; Jeong U.; Kim T. S.; Kim B. J. Flexible, highly efficient all-polymer solar cells. Nat. Commun., 2015, 6, 8547. doi:10.1038/ncomms9547http://dx.doi.org/10.1038/ncomms9547
Yao Z. F.; Zheng Y. Q.; Li Q. Y.; Lei T.; Zhang S.; Zou L.; Liu H. Y.; Dou J. H.; Lu Y.; Wang J. Y.; Gu X. D.; Pei J. Wafer-scale fabrication of high-performance n-type polymer monolayer transistors using a multi-level self-assembly strategy. Adv. Mater., 2019, 31(7), e1806747. doi:10.1002/adma.201806747http://dx.doi.org/10.1002/adma.201806747
Kumar S.; Dunn I. S.; Deng S. B.; Zhu T.; Zhao Q. C.; Williams O. F.; Tempelaar R.; Huang L. B. Exciton annihilation in molecular aggregates suppressed through quantum interference. Nat. Chem., 2023, 15, 1118-1126. doi:10.1038/s41557-023-01233-xhttp://dx.doi.org/10.1038/s41557-023-01233-x
Zhang S.; Ocheje M. U.; Luo S. C.; Ehlenberg D.; Appleby B.; Weller D.; Zhou D. S.; Rondeau-Gagné S.; Gu X. D. Probing the viscoelastic property of pseudo free-standing conjugated polymeric thin films. Macromol. Rapid Commun., 2018, 39(14), e1800092. doi:10.1002/marc.201800092http://dx.doi.org/10.1002/marc.201800092
Hou Y.; Chen H. J.; Lian W. R.; Li H. Q.; Hu X. G.; Liu X. Y. Calamitic blatter radicals for large-area solution-coated resistive memories. Adv. Funct. Mater., 2023, 33(47), 2306056. doi:10.1002/adfm.202306056http://dx.doi.org/10.1002/adfm.202306056
Bay R. K.; Crosby A. J. Uniaxial extension of ultrathin freestanding polymer films. ACS Macro Lett., 2019, 8(9), 1080-1085. doi:10.1021/acsmacrolett.9b00408http://dx.doi.org/10.1021/acsmacrolett.9b00408
Granzhan A.; Monchaud D.; Saettel N.; Guédin A.; Mergny J. L.; Teulade-Fichou M. P. "One ring to bind them all" Part II: identification of promising G-quadruplex ligands by screening of cyclophane-type macrocycles. J. Nucleic Acids, 2010, 2010, 460561. doi:10.4061/2010/460561http://dx.doi.org/10.4061/2010/460561
Zhang Y. P.; Song S. Q.; Mao M. X.; Li C. H.; Zheng Y. X.; Zuo J. L. Efficient circularly polarized photoluminescence and electroluminescence of chiral spiro-skeleton based thermally activated delayed fluorescence molecules. Sci. China Chem., 2022, 65(7), 1347-1355. doi:10.1007/s11426-022-1249-7http://dx.doi.org/10.1007/s11426-022-1249-7
Jin Q.; Du R. C.; Tang H.; Zhao Y.; Peng W. S.; Li Y. Y.; Zhang J.; Zhu T. S.; Huang X. X.; Kong D. S.; He Y. C.; Bao T. W.; Kong D. S.; Wang X. L.; Wang R.; Zhang Q. H.; Jia X. D. Quadruple H-bonding and polyrotaxanes dual cross-linking supramolecular elastomer for high toughness and self-healing conductors. Angew. Chem. Int. Ed., 2023, 62(26), e202305282. doi:10.1002/anie.202305282http://dx.doi.org/10.1002/anie.202305282
Zhang Q. H.; Jiang Y. W.; Chen L. T.; Chen W.; Li J. X.; Cai Y. F.; Ma C. Q.; Xu W. H.; Lu Y. Q.; Jia X. D.; Bao Z. N. Ultra-compliant and tough thermochromic polymer for self-regulated smart windows. Adv. Funct. Mater., 2021, 31(18), 2100686. doi:10.1002/adfm.202100686http://dx.doi.org/10.1002/adfm.202100686
Liu Y. H.; Wan J. J.; Zhao X. Y.; Zhao J.; Guo Y. C.; Bai R. X.; Zhang Z. M.; Yu W.; Gibson H. W.; Yan X. Z. Highly strong and tough supramolecular polymer networks enabled by cryptand-based host-guest recognition. Angew. Chem. Int. Ed., 2023, 62(20), e202302370. doi:10.1002/anie.202302370http://dx.doi.org/10.1002/anie.202302370
Li H.; Yu M. N.; Gu J. B.; Bao Q. J.; Wang Y. C.; Li Y.; Ma Y.; Bai L. B.; Zhuo Z. Q.; Zhang Y. L.; Zhang J. R.; Wang Y. Y.; Luo M. M.; Liu Y. R.; Li C. H.; Lin J. Y.; Zhang X. W.; Feng Q. Y.; Xie L. H. Intrinsically flexible and aging resistant fluorene-based rod-coil copolymer for bendable deep-blue PLEDs. Adv. Funct. Mater., 2023, 33(40), 2303947. doi:10.1002/adfm.202303947http://dx.doi.org/10.1002/adfm.202303947
0
浏览量
171
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构