浏览全部资源
扫码关注微信
华中科技大学化学与化工学院 能量转换与存储材料化学教育部重点实验室 材料化学与服役失效湖北省重点实验室 武汉 430074
E-mail: rhdeng@hust.edu.cn
纸质出版日期:2024-05-20,
网络出版日期:2024-03-11,
收稿日期:2023-12-28,
录用日期:2024-01-31
移动端阅览
王勉, 邓仁华, 朱锦涛. 基于3D受限自组装构筑中空介孔氧化硅/碳复合微球. 高分子学报, 2024, 55(5), 604-613
Wang, M.; Deng, R. H.; Zhu, J. T. Silica/carbon composite hollow mesoporous microparticles by 3D confined self-assembly. Acta Polymerica Sinica, 2024, 55(5), 604-613
王勉, 邓仁华, 朱锦涛. 基于3D受限自组装构筑中空介孔氧化硅/碳复合微球. 高分子学报, 2024, 55(5), 604-613 DOI: 10.11777/j.issn1000-3304.2023.23299.
Wang, M.; Deng, R. H.; Zhu, J. T. Silica/carbon composite hollow mesoporous microparticles by 3D confined self-assembly. Acta Polymerica Sinica, 2024, 55(5), 604-613 DOI: 10.11777/j.issn1000-3304.2023.23299.
发展简单、高效、可控的方法来制备中空介孔微球是介孔材料领域的研究热点. 本工作结合嵌段共聚物的三维受限自组装(3D-CSA)和自模板碳化策略,建立了一种构筑中空介孔微球的新方法. 首先,采用乳液-溶剂挥发法实现嵌段共聚物与全氟辛烷(PFO)在3D受限空间的分级组装,获得了核-壳结构微球,其中壳层由微相分离的嵌段共聚物构成. 然后,在壳层的连续相选择性地复合氧化硅,既实现了无机框架的负载,又实现了对连续相聚合物链选择性交联. 对复合微球进行煅烧处理后,实现了壳层连续相聚合物的选择性碳化,获得了中空介孔氧化硅/碳复合微球. 本研究系统地阐述了核-壳型分级结构微球的形成机理和必备条件,研究了氧化硅前驱体添加量和嵌段共聚物分子量对中空介孔氧化硅/碳复合微球形貌的影响,为制备中空介孔微球材料提供了一种简便、可控的方法.
Hollow mesoporous microparticles have attracted much attention because of their unique internal cavity structure and functional shell
which combines the physical and chemical properties of mesoporous materials. It is therefore of great interest to develop facile
effective
and controllable methods for the preparation of hollow mesoporous microspheres. This research proposes a new strategy for creating silica/carbon composite hollow mesoporous microparticles
via
the combination of three-dimensional confined self-assembly (3D-CSA) of block copolymer (BCP) and a self-template carbonization strategy. Firstly
using the 3D-CSA method
the BCP and perfluorooctane (PFO) underwent hierarchical self-assembly into core-shell microparticles. Notably
the shell was composed of BCP with mesostructure
s
via
microphase separation. Then
the continuous phase of the shell was selectively composited with silicon oxide on purpose of loading of the inorganic frame and cross-linking. Ultimately
the silica/carbon composite hollow mesoporous microspheres were generated by calcining the composite microparticles to selectively carbonize the continuous phase of the shell. The formation mechanism and necessary conditions of core-shell microparticles were systematically described. Additionally
the effects of the amount of precursors and the molecular weight of BCP on the morphology of hollow mesoporous microspheres were studied. This research provides a simple yet controllable method for the creation of novel hollow mesoporous microparticles.
嵌段共聚物三维受限自组装中空微球介孔微球
Block copolymers3D confinementSelf-assemblyHollow microparticlesMesoporous microparticles
Li Z. S.; Li B. L.; Yu C. L.; Wang H. Q.; Li Q. Y. Recent progress of hollow carbon nanocages: general design fundamentals and diversified electrochemical applications. Adv. Sci., 2023, 10(7), 202206605. doi:10.1002/advs.202206605http://dx.doi.org/10.1002/advs.202206605
Tang Y. J.; Ding J. N.; Zhou W. X.; Cao S.; Yang F. Y.; Sun Y. Y.; Zhang S. T.; Xue H. G.; Pang H. Design of uniform hollow carbon nanoarchitectures: different capacitive deionization between the hollow shell thickness and cavity size. Adv. Sci., 2023, 10(9), e2206960. doi:10.1002/advs.202206960http://dx.doi.org/10.1002/advs.202206960
Zhou L.; Zhuang Z. C.; Zhao H. H.; Lin M. T.; Zhao D. Y.; Mai L. Q. Intricate hollow structures: controlled synthesis and applications in energy storage and conversion. Adv. Mater., 2017, 29(20), 1602914. doi:10.1002/adma.201602914http://dx.doi.org/10.1002/adma.201602914
Prieto G.; Tüysüz H.; Duyckaerts N.; Knossalla J.; Wang G. H.; Schüth F. Hollow nano- and microstructures as catalysts. Chem. Rev., 2016, 116(22), 14056-14119. doi:10.1021/acs.chemrev.6b00374http://dx.doi.org/10.1021/acs.chemrev.6b00374
Zou Y. D.; Zhou X. R.; Ma J. H.; Yang X. Y.; Deng Y. H. Recent advances in amphiphilic block copolymer templated mesoporous metal-based materials: assembly engineering and applications. Chem. Soc. Rev., 2020, 49(4), 1173-1208. doi:10.1039/C9CS00334Ghttp://dx.doi.org/10.1039/C9CS00334G
Zhou X. H.; He X. L.; Shi K.; Yuan L. P.; Yang Y.; Liu Q. Y.; Ming Y.; Yi C.; Qian Z. Y. Injectable thermosensitive hydrogel containing erlotinib-loaded hollow mesoporous silica nanoparticles as a localized drug delivery system for NSCLC therapy. Adv. Sci., 2020, 7(23), 2001442. doi:10.1002/advs.202001442http://dx.doi.org/10.1002/advs.202001442
Huang C. L.; Zhang L.; Guo Q.; Zuo Y. Y.; Wang N. N.; Wang H.; Kong D. L.; Zhu D. W.; Zhang L. H. Robust nanovaccine based on polydopamine-coated mesoporous silica nanoparticles for effective photothermal-immunotherapy against melanoma. Adv. Funct. Mater., 2021, 31(18), 2010637. doi:10.1002/adfm.202010637http://dx.doi.org/10.1002/adfm.202010637
Fan W. P.; Lu N.; Shen Z. Y.; Tang W.; Shen B.; Cui Z. W.; Shan L. L.; Yang Z.; Wang Z. T.; Jacobson O.; Zhou Z. J.; Liu Y. J.; Hu P.; Yang W. J.; Song J. B.; Zhang Y.; Zhang L. W.; Khashab N. M.; Aronova M. A.; Lu G. M.; Chen X. Y. Generic synthesis of small-sized hollow mesoporous organosilica nanoparticles for oxygen-independent X-ray-activated synergistic therapy. Nat. Commun., 2019, 10(1), 1241. doi:10.1021/acsnano.9b02477http://dx.doi.org/10.1021/acsnano.9b02477
Zhao Z. W.; Duan L. L.; Zhao Y. J.; Wang L. P.; Zhang J. Y.; Bu F. X.; Sun Z. H.; Zhang T. S.; Liu M. L.; Chen H. X.; Yang Y.; Lan K.; Lv Z. R.; Zu L. H.; Zhang P. F.; Che R. C.; Tang Y.; Chao D. L.; Li W.; Zhao D. Y. Constructing unique mesoporous carbon superstructures via monomicelle interface confined assembly. J. Am. Chem. Soc., 2022, 144(26), 11767-11777. doi:10.1021/jacs.2c03814http://dx.doi.org/10.1021/jacs.2c03814
Chen Y.; Zeng Y.; Hung C. T.; Zhang Z. H.; Lv Z. R.; Huang S. C.; Yang Y.; Liu Y. P.; Li W. Interfacial synergism of hollow mesoporous Pt/WOx/SiO2-TiO2 catalysts enable highly selective hydrogenolysis of glycerol to 1,3-propanediol. Nano Res., 2023, 16(7), 9081-9090. doi:10.1007/s12274-023-5712-0http://dx.doi.org/10.1007/s12274-023-5712-0
Liu J. W.; Ma Y. L.; Zhang L. L.; Zheng Y. N.; Zhang R.; Zhang L.; Wei F.; Qiao Z. N. A versatile ligand-assisted cooperative template method to synthesize multi-shelled mesoporous hollow metal hydroxide and oxide nanospheres as catalytic reactors. Nano Res., 2021, 14(9), 3260-3266. doi:10.1007/s12274-021-3403-2http://dx.doi.org/10.1007/s12274-021-3403-2
Tian H.; Zhao J. H.; Wang X. Y.; Wang L. Z.; Liu H.; Wang G. X.; Huang J.; Liu J.; Lu G. Q. M. Construction of hollow mesoporous silica nanoreactors for enhanced photo-oxidations over Au-Pt catalysts. Natl. Sci. Rev., 2020, 7(11), 1647-1655. doi:10.1093/nsr/nwaa080http://dx.doi.org/10.1093/nsr/nwaa080
Li K. J.; Wei J. X.; Yu H. B.; Xu P. Y.; Wang J. H.; Yin H. F.; Cohen Stuart M. A.; Wang J. Y.; Zhou S. H. A generic method for preparing hollow mesoporous silica catalytic nanoreactors with metal oxide nanoparticles inside their cavities. Angew. Chem. Int. Ed, 2018, 57(50), 16458-16463. doi:10.1002/anie.201810777http://dx.doi.org/10.1002/anie.201810777
Ma Y. F.; Wang L. W.; Zhao W. T.; Liu T. Y.; Li H. T.; Luo W. H.; Jiang Q. K.; Liu W.; Yang Q. H.; Huang J.; Zhang R. G.; Liu J.; Lu G. Q. M.; Li C. Reactant enrichment in hollow void of Pt NPs@MnOx nanoreactors for boosting hydrogenation performance. Natl. Sci. Rev., 2023, 10(10), nwad201. doi:10.1093/nsr/nwad201http://dx.doi.org/10.1093/nsr/nwad201
Zhou X. M.; Liu Y.; Ren Y.; Mu T. S.; Yin X. C.; Du C. Y.; Huo H.; Cheng X. Q.; Zuo P. J.; Yin G. P. Engineering molecular polymerization for template-free SiOx/C hollow spheres as ultrastable anodes in lithium-ion batteries. Adv. Funct. Mater., 2021, 31(21), 2101145. doi:10.1002/adfm.202101145http://dx.doi.org/10.1002/adfm.202101145
Liang Z. J.; Peng Y. H.; Feng H. H.; Hong Z. B.; Liu F. Q.; Yu R. H.; Cao Y.; Xie M. Y.; Zhang Y. T.; Zhang X.; Yi X. F.; Zheng A. M.; Wu J. S.; Xiao W.; Schüth F.; Gu D. Versatile synthesis of hollow-structured mesoporous carbons by enhanced surface interaction for high-performance lithium-ion batteries. Adv. Mater., 2023, 2305050. doi:10.1002/adma.202305050http://dx.doi.org/10.1002/adma.202305050
Ye W. B.; Li X.; Zhang B. W.; Liu W. C.; Cheng Y.; Fan X. H.; Zhang H. H.; Liu Y. P.; Dong Q. F.; Wang M. S. Superfast mass transport of Na/K via mesochannels for dendrite-free metal batteries. Adv. Mater., 2023, 35(15), e2210447.
Deng R. H.; Liu S. Q.; Li J. Y.; Liao Y. G.; Tao J.; Zhu J. T. Mesoporous block copolymer nanoparticles with tailored structures by hydrogen-bonding-assisted self-assembly. Adv. Mater., 2012, 24(14), 1889-1893. doi:10.1002/adma.201200102http://dx.doi.org/10.1002/adma.201200102
Deng R. H.; Xu J. P.; Yi G. R.; Kim J. W.; Zhu J. T. Responsive colloidal polymer particles with ordered mesostructures. Adv. Funct. Mater., 2021, 31(12), 2008169. doi:10.1002/adfm.202008169http://dx.doi.org/10.1002/adfm.202008169
Zheng X. H.; Ren M.; Wang H. Y.; Wang H. Y.; Geng Z.; Xu J. P.; Deng R. H.; Chen S. B.; Binder W. H.; Zhu J. T. Halogen-bond mediated 3D confined assembly of AB diblock copolymer and C homopolymer blends. Small, 2021, 17(18), e2007570. doi:10.1002/smll.202007570http://dx.doi.org/10.1002/smll.202007570
Hu D. W.; Chang X. H.; Xu Y. Q.; Yu Q. L.; Zhu Y. T. Light-enabled reversible shape transformation of block copolymer particles. ACS Macro Lett., 2021, 10(7), 914-920. doi:10.1021/acsmacrolett.1c00356http://dx.doi.org/10.1021/acsmacrolett.1c00356
Wong C. K.; Qiang X. L.; Müller A. H. E.; Gröschel A. H. Self-assembly of block copolymers into internally ordered microparticles. Prog. Polym. Sci., 2020, 102, 101211. doi:10.1016/j.progpolymsci.2020.101211http://dx.doi.org/10.1016/j.progpolymsci.2020.101211
Yan N.; Zhu Y. T.; Jiang W. Recent progress in the self-assembly of block copolymers confined in emulsion droplets. Chem. Commun., 2018, 54(94), 13183-13195. doi:10.1039/c8cc05812ahttp://dx.doi.org/10.1039/c8cc05812a
Wang M.; Mao X.; Liu J. Y.; Deng B. T.; Deng S.; Jin S. H.; Li W.; Gong J.; Deng R. H.; Zhu J. T. A versatile 3D-confined self-assembly strategy for anisotropic and ordered mesoporous carbon microparticles. Adv. Sci., 2022, 9(25), e2202394. doi:10.1002/advs.202202394http://dx.doi.org/10.1002/advs.202202394
Liu J. Y.; Song H. R.; Wang M.; Jin S. H.; Liang Z.; Mao X.; Li W.; Deng R. H.; Zhu J. T. Asymmetric mesoporous carbon microparticles by 3D-confined self-assembly of block copolymer/homopolymer blends and selective carbonization. Chinese J. Polym. Sci., 2023, 41(5), 787-793. doi:10.1007/s10118-023-2935-1http://dx.doi.org/10.1007/s10118-023-2935-1
Lee K.; Lee Y. J.; Lee M. J.; Han J.; Ryu K.; Kwon J. A.; Kim E. J.; Kang H.; Kim B. H.; Kim B. J.; Lee S. W. Structure-controlled carbon hosts for dendrite-free aqueous zinc batteries. Small, 2023, 19(36), e2302334. doi:10.1002/smll.202302334http://dx.doi.org/10.1002/smll.202302334
Lee Y. J.; Kim H. E.; Oh H.; Yun H.; Lee J.; Shin S.; Lee H.; Kim B. J. Lens-shaped carbon particles with perpendicularly-oriented channels for high-performance proton exchange membrane fuel cells. ACS Nano, 2022, 16(2), 2988-2996. doi:10.1021/acsnano.1c10280http://dx.doi.org/10.1021/acsnano.1c10280
Lee K.; Lee Y. J.; Lee M. J.; Han J.; Lim J.; Ryu K.; Yoon H.; Kim B. H.; Kim B. J.; Lee S. W. A 3D hierarchical host with enhanced sodiophilicity enabling anode-free sodium-metal batteries. Adv. Mater., 2022, 34(14), e2109767. doi:10.1002/adma.202270111http://dx.doi.org/10.1002/adma.202270111
Hwang J.; Kim S.; Wiesner U.; Lee J. Generalized access to mesoporous inorganic particles and hollow spheres from multicomponent polymer blends. Adv. Mater., 2018, 30(27), e1801127. doi:10.1002/adma.201870195http://dx.doi.org/10.1002/adma.201870195
Kim S.; Hwang J.; Lee J.; Lee J. Polymer blend directed anisotropic self-assembly toward mesoporous inorganic bowls and nanosheets. Sci. Adv., 2020, 6(33), eabb3814. doi:10.1126/sciadv.abb3814http://dx.doi.org/10.1126/sciadv.abb3814
Xu J. P.; Li J.; Yang Y.; Wang K.; Xu N.; Li J. Y.; Liang R. J.; Shen L.; Xie X. L.; Tao J.; Zhu J. T. Block copolymer capsules with structure-dependent release behavior. Angew. Chem. Int. Ed., 2016, 55(47), 14633-14637. doi:10.1002/anie.201607982http://dx.doi.org/10.1002/anie.201607982
Deng R. H.; Liu S. Q.; Liang F. X.; Wang K.; Zhu J. T.; Yang Z. Z. Polymeric Janus particles with hierarchical structures. Macromolecules, 2014, 47(11), 3701-3707. doi:10.1021/ma500331whttp://dx.doi.org/10.1021/ma500331w
Deng S.; Yan T. H.; Wang M.; Liu J. Y.; Deng R. H.; Zhu J. T. Block copolymer particles with tunable and robust internal nanostructures by combining hydrogen-bonding and crosslinking. Supramol. Mater., 2023, 2, 100034. doi:10.1016/j.supmat.2023.100034http://dx.doi.org/10.1016/j.supmat.2023.100034
Drelinkiewicz A.; Sobczak J.; Sobczak E.; Krawczyk M.; Zięba A.; Waksmundzka-Góra A. Physicochemical and catalytic properties of Pt-poly(4-vinylpyridine) composites. Mater. Chem. Phys., 2008, 114(2), 763-773. doi:10.1016/j.matchemphys.2008.10.028http://dx.doi.org/10.1016/j.matchemphys.2008.10.028
Tung S. H.; Kalarickal N. C.; Mays J. W.; Xu T. Hierarchical assemblies of block-copolymer-based supramolecules in thin films. Macromolecules, 2008, 41(17), 6453-6462. doi:10.1021/ma800726rhttp://dx.doi.org/10.1021/ma800726r
Lee S.; Shin J. J.; Ku K. H.; Lee Y. J.; Jang S. G.; Yun H.; Kim B. J. Interfacial instability-driven morphological transition of prolate block copolymer particles: striped football, larva to sphere. Macromolecules, 2020, 53(16), 7198-7206. doi:10.1021/acs.macromol.0c01004http://dx.doi.org/10.1021/acs.macromol.0c01004
0
浏览量
156
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构