浏览全部资源
扫码关注微信
1.北京化工大学 化工资源有效利用国家重点实验室 北京软物质科学与工程高精尖创新中心 北京 100029
2.Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003
[ "史少伟,男,1989年生. 北京化工大学材料科学与工程学院教授,博士生导师. 2010年本科毕业于北京化工大学,2015年在北京化工大学获得博士学位,2015~2016年在滑铁卢大学从事博士后研究,2016年起在北京化工大学工作. 2019年入选北京化工大学“青年英才百人计划”,获2023年度中国化学会青年化学奖,2023年获国家优秀青年科学基金项目资助. 主要研究方向为软物质表面与界面." ]
纸质出版日期:2024-05-20,
网络出版日期:2024-03-25,
收稿日期:2023-12-29,
录用日期:2024-02-17
移动端阅览
封维潇, Thomas P. Russell, 史少伟. 结构化液体的设计、构筑与应用. 高分子学报, 2024, 55(5), 485-508
Feng, W. X.; Russell, T. P. ; Shi, S. W. Structured liquids: design, construction and applications. Acta Polymerica Sinica, 2024, 55(5), 485-508
封维潇, Thomas P. Russell, 史少伟. 结构化液体的设计、构筑与应用. 高分子学报, 2024, 55(5), 485-508 DOI: 10.11777/j.issn1000-3304.2023.23300.
Feng, W. X.; Russell, T. P. ; Shi, S. W. Structured liquids: design, construction and applications. Acta Polymerica Sinica, 2024, 55(5), 485-508 DOI: 10.11777/j.issn1000-3304.2023.23300.
结构化液体是近年来基于二元流体体系,利用固体粒子液/液界面自组装和堵塞相变构筑的一类非平衡态软物质材料,兼具固体的结构稳定性和液体的流动性. 然而,受限于组装基元和成型方法,制备具有精准结构的智能结构化液体及衍生功能材料仍面临挑战. 我们课题组在该领域开展了大量研究工作,在发展界面调控新机制,制备液体/固体新材料,以及实现材料器件新突破等方面取得了系列创新成果. 本专论从固体粒子界面自组装机制出发,重点阐述了一种利用纳米粒子和聚合物液/液界面共组装制备纳米粒子表面活性剂,进而构筑结构化液体的普适策略; 总结归纳了结构化液体在响应性调控、高效精准构筑以及功能材料制备等方面的研究进展; 并对该领域面临的机遇和挑战做出展望.
Structured liquids are a new type of non-equilibrium soft materials constructed by the assembly and jamming of solid particles at the liquid/liquid interface
combining the structural stability of solids with the fluidity of liquids. However
the preparation of smart structured liquids and derived functional materials with precise structures is still challenging
due to the lacking of suitable building blocks and manufacturing methods. Our group has carried out a great deal of research work in this field
and has achieved a series of significant results in the development of new self-assembly mechanism at the interface
the preparation of new liquid/solid materials
and the construction of novel devices with advanced functions. In this review
we highlight a generalized strategy for the preparation of structured liquids by using the formation
assembly and jamming of nanoparticle surfactants
in which nanoparticle surfactants are generated by the co-assembly between nanoparticles and polymeric ligands at the liquid/liquid interface. We first introduce the self-assembly mechanism of solid particles at the liquid/liquid interface. Then we summarize the progress in the construction of structured liquids and derived materials. Finally
we provide an outlook of the opportunities and challenges in this field.
结构化液体纳米粒子表面活性剂液/液界面自组装
Structured liquidsNanoparticle surfactantsLiquid/liquid interfaceSelf-assembly
Mukhopadhyay M.; Ghosh U. U.; Sarkar D.; DasGupta S. Surface property induced morphological alterations of human erythrocytes. Soft Matter, 2018, 14(36), 7335-7346. doi:10.1039/c8sm01146jhttp://dx.doi.org/10.1039/c8sm01146j
Baldwin K. T.; Murai K. K.; Khakh B. S. Astrocyte morphology. Trends in Cell Biology, 2023, 10.1016/j.tcb.2023.09.006. doi:10.1016/j.tcb.2023.09.006http://dx.doi.org/10.1016/j.tcb.2023.09.006
Bi L.; Gao W.; Meng L.; Gu G.; Shi Z.; Bai Y. Deep learning for discovering and identifying morphological heterogeneity of neutrophils in primary hematological diseases based on bone marrow neutrophils analysis. Blood, 2020, 136(Supplement 1), 18-18. doi:10.1182/blood-2020-143433http://dx.doi.org/10.1182/blood-2020-143433
Stratford K.; Adhikari R.; Pagonabarraga I.; Desplat J. C.; Cates M. E. Colloidal jamming at interfaces: a route to fluid-bicontinuous gels. Science, 2005, 309(5744), 2198-2201. doi:10.1126/science.1116589http://dx.doi.org/10.1126/science.1116589
Clegg P. S.; Herzig E. M.; Schofield A. B.; Egelhaaf S. U.; Horozov T. S.; Binks B. P.; Cates M. E.; Poon W. C. K. Emulsification of partially miscible liquids using colloidal particles: nonspherical and extended domain structures. Langmuir, 2007, 23(11), 5984-5994. doi:10.1021/la063707thttp://dx.doi.org/10.1021/la063707t
Liu A. J.; Nagel S. R. Jamming is not just cool any more. Nature, 1998, 396, 21-22. doi:10.1038/23819http://dx.doi.org/10.1038/23819
Spencer, U. P. CXCVI-emulsions. J. Chem. Soc., Trans., 1907, 91(0), 2001-2021. doi:10.1039/ct9079102001http://dx.doi.org/10.1039/ct9079102001
Ramsden W. Separation of solids in the surface-layers of solutions and 'suspensions' (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation): preliminary account. Proc. R. Soc. Lond. Ser. I, 1904, 72(477-486), 156-164. doi:10.1098/rspl.1903.0034http://dx.doi.org/10.1098/rspl.1903.0034
Pieranski P. Two-dimensional interfacial colloidal crystals. Phys. Rev. Lett., 1980, 45(7), 569-572. doi:10.1103/physrevlett.45.569http://dx.doi.org/10.1103/physrevlett.45.569
Binks B. Particles as surfactants—similarities and differences. Curr. Opin. Colloid Interface Sci., 2002, 7, 21-41. doi:10.1016/s1359-0294(02)00008-0http://dx.doi.org/10.1016/s1359-0294(02)00008-0
Binks B. P.; Lumsdon S. O. Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir, 2000, 16(23), 8622-8631. doi:10.1021/la000189shttp://dx.doi.org/10.1021/la000189s
Lin Y.; Skaff H.; Emrick T.; Dinsmore A. D.; Russell T. P. Nanoparticle assembly and transport at liquid-liquid interfaces. Science, 2003, 299(5604), 226-229. doi:10.1126/science.1078616http://dx.doi.org/10.1126/science.1078616
Lin Y.; Böker A.; Skaff H.; Cookson D.; Dinsmore A. D.; Emrick T.; Russell T. P. Nanoparticle assembly at fluid interfaces: structure and dynamics. Langmuir, 2005, 21(1), 191-194. doi:10.1021/la048000qhttp://dx.doi.org/10.1021/la048000q
Reincke F.; Hickey S. G.; Kegel W. K.; Vanmaekelbergh D. Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface. Angew. Chem. Int. Ed., 2004, 43(4), 458-462. doi:10.1002/anie.200352339http://dx.doi.org/10.1002/anie.200352339
Cui M. M.; Emrick T.; Russell T. P. Stabilizing liquid drops in nonequilibrium shapes by the interfacial jamming of nanoparticles. Science, 2013, 342(6157), 460-463. doi:10.1126/science.1242852http://dx.doi.org/10.1126/science.1242852
Imperiali L.; Clasen C.; Fransaer J.; Macosko C. W.; Vermant J. A simple route towards graphene oxide frameworks. Mater. Horiz., 2014, 1(1), 139-145. doi:10.1039/c3mh00047hhttp://dx.doi.org/10.1039/c3mh00047h
Huang C. L.; Chai Y.; Jiang Y. F.; Forth J.; Ashby P. D.; Arras M. M. L.; Hong K. L.; Smith G. S.; Yin P. C.; Russell T. P. The interfacial assembly of polyoxometalate nanoparticle surfactants. Nano Lett., 2018, 18(4), 2525-2529. doi:10.1021/acs.nanolett.8b00208http://dx.doi.org/10.1021/acs.nanolett.8b00208
Li R. Q.; Chai Y.; Jiang Y. F.; Ashby P. D.; Toor A.; Russell T. P. Carboxylated fullerene at the oil/water interface. ACS Appl. Mater. Interfaces, 2017, 9(39), 34389-34395. doi:10.1021/acsami.7b07154http://dx.doi.org/10.1021/acsami.7b07154
Feng T.; Hoagland D. A.; Russell T. P. Assembly of acid-functionalized single-walled carbon nanotubes at oil/water interfaces. Langmuir, 2014, 30(4), 1072-1079. doi:10.1021/la404543shttp://dx.doi.org/10.1021/la404543s
Xie G. H.; Zhu S. P.; Kim P. Y.; Jiang S. B.; Yi Q. P.; Li P.; Chu Z. L.; Helms B. A.; Russell T. P. Relaxing wrinkles in jammed interfacial assemblies. Angew. Chem. Int. Ed., 2023, 62(36), e202307713. doi:10.1002/anie.202307713http://dx.doi.org/10.1002/anie.202307713
Sun Z. W.; Feng T.; Russell T. P. Assembly of graphene oxide at water/oil interfaces: tessellated nanotiles. Langmuir, 2013, 29(44), 13407-13413. doi:10.1021/la402436whttp://dx.doi.org/10.1021/la402436w
Chen D. Y.; Sun Z. W.; Russell T. P.; Jin L. H. Coassembly kinetics of graphene oxide and block copolymers at the water/oil interface. Langmuir, 2017, 33(36), 8961-8969. doi:10.1021/acs.langmuir.7b02009http://dx.doi.org/10.1021/acs.langmuir.7b02009
Yin Y. X.; Liu T.; Wang B. B.; Yin B. Q.; Yang Y.; Russell T. P.; Shi S. W. Nanoparticle/polyelectrolyte complexes for biomimetic constructs. Adv. Funct. Mater., 2022, 32(6), 2108895. doi:10.1002/adfm.202108895http://dx.doi.org/10.1002/adfm.202108895
Wang B. B.; Zhang Z.; Feng W. X.; Luo J. Q.; Shi S. W. Stabilizing and structuring oil-oil interfaces by molecular brush surfactants. Aggregate, 2022, 3(6), e292. doi:10.1002/agt2.292http://dx.doi.org/10.1002/agt2.292
Chen J.; Sun S. Y.; Wang Y. K.; Feng W. X.; Luo Y. Z.; Li M. W.; Shi S. W. All-oil constructs stabilized by cellulose nanocrystal surfactants. ACS Appl. Mater. Interfaces, 2023, 15(22), 27391-27398. doi:10.1021/acsami.3c04539http://dx.doi.org/10.1021/acsami.3c04539
Gu P. Y.; Chai Y.; Hou H. H.; Xie G. H.; Jiang Y. F.; Xu Q. F.; Liu F.; Ashby P. D.; Lu J. M.; Russell T. P. Stabilizing liquids using interfacial supramolecular polymerization. Angew. Chem. Int. Ed., 2019, 58(35), 12112-12116. doi:10.1002/anie.201906339http://dx.doi.org/10.1002/anie.201906339
Gu P. Y.; Xie G.; Kim P. Y.; Chai Y.; Wu X.; Jiang Y.; Xu Q. F.; Liu F.; Lu J. M.; Russell T. P. Surfactant‐induced interfacial aggregation of porphyrins for structuring color-tunable liquids. Angew. Chem. Int. Ed., 2020, 60(6), 2871-2876. doi:10.1002/anie.202012742http://dx.doi.org/10.1002/anie.202012742
Gu P. Y.; Kim P. Y.; Chai Y.; Ashby P. D.; Xu Q. F.; Liu F.; Chen Q.; Lu J. M.; Russell T. P. Visualizing assembly dynamics of all-liquid 3D architectures. Small, 2022, 18(6), e2105017. doi:10.1002/smll.202105017http://dx.doi.org/10.1002/smll.202105017
Gu P. Y.; Zhou F.; Xie G. H.; Kim P. Y.; Chai Y.; Hu Q.; Shi S. W.; Xu Q. F.; Liu F.; Lu J. M.; Russell T. P. Visualizing interfacial jamming using an aggregation-induced-emission molecular reporter. Angew. Chem. Int. Ed., 2021, 60(16), 8694-8699. doi:10.1002/anie.202016217http://dx.doi.org/10.1002/anie.202016217
Qian B. Q.; Shi S. W.; Wang H. Q.; Russell T. P. Reconfigurable liquids stabilized by DNA surfactants. ACS Appl. Mater. Interfaces, 2020, 12(11), 13551-13557. doi:10.1021/acsami.0c01487http://dx.doi.org/10.1021/acsami.0c01487
Xu R. Y.; Liu T.; Sun H. L.; Wang B. B.; Shi S. W.; Russell T. P. Interfacial assembly and jamming of polyelectrolyte surfactants: a simple route to print liquids in low-viscosity solution. ACS Appl. Mater. Interfaces, 2020, 12(15), 18116-18122. doi:10.1021/acsami.0c00577http://dx.doi.org/10.1021/acsami.0c00577
Wang B. B.; Liu T.; Chen H.; Yin B. Q.; Zhang Z.; Russell T. P.; Shi S. W. Molecular brush surfactants: versatile emulsifiers for stabilizing and structuring liquids. Angew. Chem. Int. Ed., 2021, 60(36), 19626-19630. doi:10.1002/anie.202104653http://dx.doi.org/10.1002/anie.202104653
Huang C. L.; Cui M. M.; Sun Z. W.; Liu F.; Helms B. A.; Russell T. P. Self-regulated nanoparticle assembly at liquid/liquid interfaces: a route to adaptive structuring of liquids. Langmuir, 2017, 33(32), 7994-8001. doi:10.1021/acs.langmuir.7b01685http://dx.doi.org/10.1021/acs.langmuir.7b01685
Huang C. L.; Sun Z. W.; Cui M. M.; Liu F.; Helms B. A.; Russell T. P. Structured liquids with pH-triggered reconfigurability. Adv. Mater., 2016, 28(31), 6612-6618. doi:10.1002/adma.201600691http://dx.doi.org/10.1002/adma.201600691
Chai Y.; Lukito A.; Jiang Y. F.; Ashby P. D.; Russell T. P. Fine-tuning nanoparticle packing at water-oil interfaces using ionic strength. Nano Lett., 2017, 17(10), 6453-6457. doi:10.1021/acs.nanolett.7b03462http://dx.doi.org/10.1021/acs.nanolett.7b03462
Sun H. L.; Li L. S.; Russell T. P.; Shi S. W. Photoresponsive structured liquids enabled by molecular recognition at liquid-liquid interfaces. J. Am. Chem. Soc., 2020, 142(19), 8591-8595. doi:10.1021/jacs.0c02555http://dx.doi.org/10.1021/jacs.0c02555
Li L. S.; Sun H. L.; Li M. W.; Yang Y.; Russell T. P.; Shi S. W. Gated molecular diffusion at liquid-liquid interfaces. Angew. Chem. Int. Ed., 2021, 60(32), 17394-17397. doi:10.1002/anie.202105500http://dx.doi.org/10.1002/anie.202105500
Sun H. L.; Li M. W.; Li L. S.; Liu T.; Luo Y. Z.; Russell T. P.; Shi S. W. Redox-responsive, reconfigurable all-liquid constructs. J. Am. Chem. Soc., 2021, 143(10), 3719-3722. doi:10.1021/jacs.1c00429http://dx.doi.org/10.1021/jacs.1c00429
Li M. W.; Sun S. Y.; Qin R. R.; Wang M.; Wang Y. K.; Yang Y.; Wu Z. P.; Shi S. W. Structured liquids stabilized by polyethyleneimine surfactants. Soft Matter, 2023, 19(4), 609-614. doi:10.1039/d2sm01559ehttp://dx.doi.org/10.1039/d2sm01559e
Luo Y. Z.; Yang Y.; Wang Y. K.; Wu Z. P.; Russell T. P.; Shi S. W. Reconfigurable liquids constructed by pillar[6]arene-based nanoparticle surfactants. Angew. Chem. Int. Ed., 2022, 61(33), e202207199. doi:10.1002/anie.202207199http://dx.doi.org/10.1002/anie.202207199
Sun S. Y.; Luo Y. Z.; Yang Y.; Chen J.; Li S. L.; Wu Z. P.; Shi S. W. Supramolecular interfaces and reconfigurable liquids derived from cucurbit[7]surfactantsuril. Small, 2022, 18(44), e2204182. doi:10.1002/smll.202204182http://dx.doi.org/10.1002/smll.202204182
Xia Z. Q.; Lin C. G.; Yang Y.; Wang Y. K.; Wu Z. P.; Song Y. F.; Russell T. P.; Shi S. W. Polyoxometalate-surfactant assemblies: responsiveness to orthogonal stimuli. Angew. Chem. Int. Ed., 2022, 61(25), e202203741. doi:10.1002/anie.202203741http://dx.doi.org/10.1002/anie.202203741
Sun S. Y.; Xie C. X.; Chen J.; Yang Y.; Li H.; Russell T. P.; Shi S. W. Responsive interfacial assemblies based on charge-transfer interactions. Angew. Chem. Int. Ed., 2021, 60(50), 26363-26367. doi:10.1002/anie.202111252http://dx.doi.org/10.1002/anie.202111252
Wang B. B.; Yin B. Q.; Zhang Z.; Yin Y. X.; Yang Y.; Wang H. Q.; Russell T. P.; Shi S. W. The assembly and jamming of nanoparticle surfactants at liquid-liquid interfaces. Angew. Chem. Int. Ed., 2022, 61(10), e202114936. doi:10.1002/anie.202114936http://dx.doi.org/10.1002/anie.202114936
Haase M. F.; Sharifi-Mood N.; Lee D.; Stebe K. J. In situ mechanical testing of nanostructured bijel fibers. ACS Nano, 2016, 10(6), 6338-6344. doi:10.1021/acsnano.6b02660http://dx.doi.org/10.1021/acsnano.6b02660
Haase M. F.; Jeon H.; Hough N.; Kim J. H.; Stebe K. J.; Lee D. Multifunctional nanocomposite hollow fiber membranes by solvent transfer induced phase separation. Nat. Commun., 2017, 8(1), 1234. doi:10.1038/s41467-017-01409-3http://dx.doi.org/10.1038/s41467-017-01409-3
Di Vitantonio G.; Wang T. C.; Haase M. F.; Stebe K. J.; Lee D. Robust bijels for reactive separation via silica-reinforced nanoparticle layers. ACS Nano, 2019, 13(1), 26-31. doi:10.1021/acsnano.8b05718http://dx.doi.org/10.1021/acsnano.8b05718
Cha S.; Lim H. G.; Haase M. F.; Stebe K. J.; Jung G. Y.; Lee D. Bicontinuous interfacially jammed emulsion gels (bijels) as media for enabling enzymatic reactive separation of a highly water insoluble substrate. Sci. Rep., 2019, 9, 6363. doi:10.1038/s41598-019-42769-8http://dx.doi.org/10.1038/s41598-019-42769-8
Huang C. L.; Forth J.; Wang W. Y.; Hong K. L.; Smith G. S.; Helms B. A.; Russell T. P. Bicontinuous structured liquids with sub-micrometre domains using nanoparticle surfactants. Nat. Nanotechnol., 2017, 12(11), 1060-1063. doi:10.1038/nnano.2017.182http://dx.doi.org/10.1038/nnano.2017.182
Mohraz A. Simple shaking yields bicontinuity. Nat. Nanotechnol., 2017, 12, 1021-1022. doi:10.1038/nnano.2017.201http://dx.doi.org/10.1038/nnano.2017.201
Shi S. W.; Liu X. B.; Li Y. N.; Wu X. F.; Wang D.; Forth J.; Russell T. P. Liquid letters. Adv. Mater., 2018, 30(9), 1705800. doi:10.1002/adma.201870057http://dx.doi.org/10.1002/adma.201870057
Rayleigh L. On the instability of jets. Proc. Lond. Math. Soc., 1878, s1-10(1), 4-13.
Toor A.; Helms B. A.; Russell T. P. Effect of nanoparticle surfactants on the breakup of free-falling water jets during continuous processing of reconfigurable structured liquid droplets. Nano Lett., 2017, 17(5), 3119-3125. doi:10.1021/acs.nanolett.7b00556http://dx.doi.org/10.1021/acs.nanolett.7b00556
Liu X. B.; Shi S. W.; Li Y. N.; Forth J.; Wang D.; Russell T. P. Liquid tubule formation and stabilization using cellulose nanocrystal surfactants. Angew. Chem. Int. Ed., 2017, 56(41), 12594-12598. doi:10.1002/anie.201706839http://dx.doi.org/10.1002/anie.201706839
Powers T. R.; Goldstein R. E.; Stone H. A.; Zhang D. F. Propagation of a topological transition: the rayleigh instability. Phys. Fluids, 1998, 10(5), 1052-1057. doi:10.1063/1.869650http://dx.doi.org/10.1063/1.869650
Utada A. S.; Lorenceau E.; Link D. R.; Kaplan P. D.; Stone H. A.; Weitz D. A. Monodisperse double emulsions generated from a microcapillary device. Science, 2005, 308(5721), 537-541. doi:10.1126/science.1109164http://dx.doi.org/10.1126/science.1109164
Forth J.; Liu X. B.; Hasnain J.; Toor A.; Miszta K.; Shi S. W.; Geissler P. L.; Emrick T.; Helms B. A.; Russell T. P. Reconfigurable printed liquids. Adv. Mater., 2018, 30(16), e1707603. doi:10.1002/adma.201707603http://dx.doi.org/10.1002/adma.201707603
Toor A.; Forth J.; Bochner de Araujo S.; Merola M. C.; Jiang Y. F.; Liu X. B.; Chai Y.; Hou H. H.; Ashby P. D.; Fuller G. G.; Russell T. P. Mechanical properties of solidifying assemblies of nanoparticle surfactants at the oil-water interface. Langmuir, 2019, 35(41), 13340-13350. doi:10.1021/acs.langmuir.9b01575http://dx.doi.org/10.1021/acs.langmuir.9b01575
Feng W. Q.; Chai Y.; Forth J.; Ashby P. D.; Russell T. P.; Helms B. A. Harnessing liquid-in-liquid printing and micropatterned substrates to fabricate 3-dimensional all-liquid fluidic devices. Nat. Commun., 2019, 10, 1095. doi:10.1038/s41467-019-09042-yhttp://dx.doi.org/10.1038/s41467-019-09042-y
Liu T.; Yin Y. X.; Yang Y.; Russell T. P.; Shi S. W. Layer-by-layer engineered all-liquid microfluidic chips for enzyme immobilization. Adv. Mater., 2022, 34(5), e2105386. doi:10.1002/adma.202105386http://dx.doi.org/10.1002/adma.202105386
Cain J. D.; Azizi A.; Maleski K.; Anasori B.; Glazer E. C.; Kim P. Y.; Gogotsi Y.; Helms B. A.; Russell T. P.; Zettl A. Sculpting liquids with two-dimensional materials: the assembly of Ti3C2Tx MXene sheets at liquid-liquid interfaces. ACS Nano, 2019, 13(11), 12385-12392. doi:10.1021/acsnano.9b05088http://dx.doi.org/10.1021/acsnano.9b05088
Popple D.; Shekhirev M.; Dai C. H.; Kim P.; Wang K. X.; Ashby P.; Helms B. A.; Gogotsi Y.; Russell T. P.; Zettl A. All-liquid reconfigurable electronics using jammed MXene interfaces. Adv. Mater., 2023, 35(13), e2208148. doi:10.1002/adma.202208148http://dx.doi.org/10.1002/adma.202208148
Yan J. J.; Baird M. A.; Popple D. C.; Zettl A.; Russell T. P.; Helms B. A. Structured-liquid batteries. J. Am. Chem. Soc., 2022, 144(9), 3979-3988. doi:10.1021/jacs.1c12417http://dx.doi.org/10.1021/jacs.1c12417
Toor A.; Lamb S.; Helms B. A.; Russell T. P. Reconfigurable microfluidic droplets stabilized by nanoparticle surfactants. ACS Nano, 2018, 12(3), 2365-2372. doi:10.1021/acsnano.7b07635http://dx.doi.org/10.1021/acsnano.7b07635
Yang Y.; Sun H. L.; Wang M.; Li M. W.; Zhang Z.; Russell T. P.; Shi S. W. pH- and redox-responsive pickering emulsions based on cellulose nanocrystal surfactants. Angew. Chem. Int. Ed., 2023, 62(16), e202218440. doi:10.1002/anie.202218440http://dx.doi.org/10.1002/anie.202218440
Wang B. B.; Yin B. Q.; Yu H.; Zhang Z.; Wang G.; Shi S. W.; Gu X. G.; Yang W. T.; Tang B. Z.; Russell T. P. Interfacial assembly and jamming of soft nanoparticle surfactants into colloidosomes and structured liquids. ACS Appl. Mater. Interfaces, 2022, 14(48), 54287-54292. doi:10.1021/acsami.2c13414http://dx.doi.org/10.1021/acsami.2c13414
Li Y. N.; Liu X. B.; Zhang Z.; Zhao S. J.; Tian G. F.; Zheng J. K.; Wang D.; Shi S. W.; Russell T. P. Adaptive structured pickering emulsions and porous materials based on cellulose nanocrystal surfactants. Angew. Chem. Int. Ed., 2018, 57(41), 13560-13564. doi:10.1002/anie.201808888http://dx.doi.org/10.1002/anie.201808888
Shi S. W.; Qian B. Q.; Wu X. Y.; Sun H. L.; Wang H. Q.; Zhang H. B.; Yu Z. Z.; Russell T. P. Self-assembly of MXene-surfactants at liquid-liquid interfaces: from structured liquids to 3D aerogels. Angew. Chem. Int. Ed., 2019, 58(50), 18171-18176. doi:10.1002/anie.201908402http://dx.doi.org/10.1002/anie.201908402
Kamkar M.; Ghaffarkhah A.; Ajdary R.; Lu Y.; Ahmadijokani F.; Mhatre S. E.; Erfanian E.; Sundararaj U.; Arjmand M.; Rojas O. J. Structured ultra-flyweight aerogels by interfacial complexation: self-assembly enabling multiscale designs. Small, 2022, 18(20), e2200220. doi:10.1002/smll.202200220http://dx.doi.org/10.1002/smll.202200220
Hashemi S. A.; Ghaffarkhah A.; Goodarzi M.; Nazemi A.; Banvillet G.; Milani A. S.; Soroush M.; Rojas O. J.; Ramakrishna S.; Wuttke S.; Russell T. P.; Kamkar M.; Arjmand M. Liquid-templating aerogels. Adv. Mater., 2023, 35(42), e2302826. doi:10.1002/adma.202370299http://dx.doi.org/10.1002/adma.202370299
Ghaffarkhah A.; Hashemi S. A.; Ahmadijokani F.; Goodarzi M.; Riazi H.; Mhatre S. E.; Zaremba O.; Rojas O. J.; Soroush M.; Russell T. P.; Wuttke S.; Kamkar M.; Arjmand M. Functional Janus structured liquids and aerogels. Nat. Commun., 2023, 14(1), 7811. doi:10.1038/s41467-023-43319-7http://dx.doi.org/10.1038/s41467-023-43319-7
Xie X. J.; Xu Z. G.; Yu X.; Jiang H.; Li H. J.; Feng W. Q. Liquid-in-liquid printing of 3D and mechanically tunable conductive hydrogels. Nat. Commun., 2023, 14(1), 4289. doi:10.1038/s41467-023-40004-7http://dx.doi.org/10.1038/s41467-023-40004-7
Liu X. B.; Kent N.; Ceballos A.; Streubel R.; Jiang Y. F.; Chai Y.; Kim P. Y.; Forth J.; Hellman F.; Shi S. W.; Wang D.; Helms B. A.; Ashby P. D.; Fischer P.; Russell T. P. Reconfigurable ferromagnetic liquid droplets. Science, 2019, 365(6450), 264-267. doi:10.1126/science.aaw8719http://dx.doi.org/10.1126/science.aaw8719
0
浏览量
334
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构