浏览全部资源
扫码关注微信
1.中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 宁波 315201
2.中国科学院大学 北京 100049
[ "张涛,男,1985年生. 中国科学院宁波材料技术与工程研究所研究员,中国科学院特聘骨干研究员. 2008、2011年于四川大学分别获学士、硕士学位. 2015年于德国德累斯顿工业大学获博士学位. 之后分别在德累斯顿工业大学、德累斯顿先进电子器件研究中心、剑桥大学从事研究工作. 2020年加入中国科学院宁波材料所,担任界面功能高分子团队负责人. 2023年获得国家基金委优秀青年基金资助. 主要研究方向为有机二维聚合物新材料设计制备、构效关系及前沿应用基础研究." ]
纸质出版日期:2024-05-20,
收稿日期:2023-12-30,
录用日期:2024-01-31
移动端阅览
赵文凯, 李升旭, 付广恩, 张涛. 二维sp2-碳共轭聚合物的结构设计、可控制备与应用研究. 高分子学报, 2024, 55(5), 532-552
Zhao, W. K.; Li, S. X.; Fu, G. E.; Zhang, T. Structural design, controlled preparation and applications of two-dimensional sp2c-conjugated polymers. Acta Polymerica Sinica, 2024, 55(5), 532-552
赵文凯, 李升旭, 付广恩, 张涛. 二维sp2-碳共轭聚合物的结构设计、可控制备与应用研究. 高分子学报, 2024, 55(5), 532-552 DOI: 10.11777/j.issn1000-3304.2023.23301.
Zhao, W. K.; Li, S. X.; Fu, G. E.; Zhang, T. Structural design, controlled preparation and applications of two-dimensional sp2c-conjugated polymers. Acta Polymerica Sinica, 2024, 55(5), 532-552 DOI: 10.11777/j.issn1000-3304.2023.23301.
二维sp
2
-碳共轭聚合物是指通过碳碳双键将构筑单元连接起来的层状聚合物材料. 因其具有可设计的周期性多孔结构、高比表面积、优异的结构稳定性和高载流子迁移速率等优点,被认为是最具前景的聚合物新材料之一. 本文以作者课题组的研究工作为主,对二维sp
2
-碳共轭聚合物的结构设计和合成方法、薄膜可控制备策略及其在盐差发电、海水提铀、光催化、荧光传感和质子传导等领域应用进行了总结,并从晶体结构的调控、新型合成方法的探索、通用性薄膜合成策略的设计以及相关应用的拓展等方面对二维sp
2
-碳共轭聚合物的研究进行了展望.
Two-dimensional sp
2
c-conjugated polymers (2D sp
2
c-CPs) refer to layered materials constructed by C=C. 2D sp
2
c-CPs have shown great potential in photocatalytic conversion of high-value-added products
osmotic energy generation
fluorescence sensing
proton conduction
organic semiconductor devices
and the extraction of radioactive nuclides
due to their designable periodic porous structures
high surface area
excellent structural stability
and high charge transfer. This review primarily elucidates the research endeavors of our research group concerning 2D sp
2
c-CPs. Firstly
the structural design and synthesis methods of 2D sp
2
c-CPs are presented. Subsequently
the preparation strategies for 2D sp
2
c-CP films
primarily conducted by our research group are introduced. Moreover
the applications of 2D sp
2
c-CPs in seawater uranium extraction
osmotic energy generation
fluorescence sensing
proton conduction
and photocatalysis are summarized in detail. Finally
the review offers a perspective on the research of 2D
sp
2
c-CPs
encompassing modulation of crystal structure
exploration of novel synthesis methods
design of universal film synthesis strategies
and the expansion of related applications.
二维sp2-碳共轭共价有机框架拓扑结构设计薄膜合成光催化能源转化
2D sp2c-conjugated polymersTopologyThin film synthesisPhotocatalytic energy conversion
Namsheer K.; Rout C. S. Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC. Adv., 2021, 11(10), 5659-5697. doi:10.1039/d0ra07800jhttp://dx.doi.org/10.1039/d0ra07800j
MacFarlane L. R.; Shaikh H.; Garcia-Hernandez J. D.; Vespa M.; Fukui T.; Manners I. Functional nanoparticles through π-conjugated polymer self-assembly. Nat. Rev. Mater., 2021, 6(1), 7-26. doi:10.1038/s41578-020-00233-4http://dx.doi.org/10.1038/s41578-020-00233-4
Wang S.; Sun Q.; Gröning O.; Widmer R.; Pignedoli C. A.; Cai L.; Yu X.; Yuan B.; Li C.; Ju H.; Zhu J.; Ruffieux P.; Fasel R.; Xu W. On-surface synthesis and characterization of individual polyacetylene chains. Nat. Chem., 2019, 11(10), 924-930. doi:10.1038/s41557-019-0316-8http://dx.doi.org/10.1038/s41557-019-0316-8
Darabi M. A.; Khosrozadeh A.; Mbeleck R.; Liu Y.; Chang Q.; Jiang J.; Cai J.; Wang Q.; Luo G.; Xing M. Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability. Adv. Mater., 2017, 29(31), 1700533. doi:10.1002/adma.201770228http://dx.doi.org/10.1002/adma.201770228
Lee K.; Cho S.; Heum Park S.; Heeger A. J.; Lee C. W.; Lee S. H. Metallic transport in polyaniline. Nature, 2006, 441(7089), 65-68. doi:10.1038/nature04705http://dx.doi.org/10.1038/nature04705
Van de Burgt Y.; Lubberman E.; Fuller E. J.; Keene S. T.; Faria G. C.; Agarwal S.; Marinella M. J.; Alec Talin A.; Salleo A. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater., 2017, 16(4), 414-418. doi:10.1038/nmat4856http://dx.doi.org/10.1038/nmat4856
邵世洋, 丁军桥, 王利祥. 高分子发光材料研究进展. 高分子学报, 2018, (2), 198-216. doi:10.11777/j.issn1000-3304.2018.17289http://dx.doi.org/10.11777/j.issn1000-3304.2018.17289
张恩东, 刘礼兵, 吕凤婷, 王树. 水溶性共轭聚合物在生物传感中的应用. 高分子学报, 2018, (2), 186-197. doi:10.11777/j.issn1000-3304.2018.17269http://dx.doi.org/10.11777/j.issn1000-3304.2018.17269
Jiang Y.; Dong X.; Sun L.; Liu T.; Qin F.; Xie C.; Jiang P.; Hu L.; Lu X.; Zhou X.; Meng W.; Li N.; Brabec C. J.; Zhou Y. An alcohol-dispersed conducting polymer complex for fully printable organic solar cells with improved stability. Nat. Energy, 2022, 7(4), 352-359. doi:10.1038/s41560-022-00997-9http://dx.doi.org/10.1038/s41560-022-00997-9
Dong R.; Zhang T.; Feng X. Interface-assisted synthesis of 2materialsD: trend and challenges. Chem. Rev., 2018, 118(13), 6189-6235. doi:10.1021/acs.chemrev.8b00056http://dx.doi.org/10.1021/acs.chemrev.8b00056
Evans A. M.; Strauss M. J.; Corcos A. R.; Hirani Z.; Ji W.; Hamachi L. S.; Aguilar-Enriquez X.; Chavez A. D.; Smith B. J.; Dichtel W. R. Two-dimensional polymers and polymerizations. Chem. Rev., 2022, 122(1), 442-564. doi:10.1021/acs.chemrev.0c01184http://dx.doi.org/10.1021/acs.chemrev.0c01184
Liang R. R.; Jiang S. Y.; A, R. H.; Zhao, X. Two-dimensional covalent organic frameworks with hierarchical porosity. Chem. Soc. Rev., 2020, 49(12), 3920-3951. doi:10.1039/d0cs00049chttp://dx.doi.org/10.1039/d0cs00049c
Yuan S.; Li X.; Zhu J.; Zhang G.; van Puyvelde P.; van der Bruggen B. Covalent organic frameworks for membrane separation. Chem. Soc. Rev., 2019, 48(10), 2665-2681. doi:10.1039/c8cs00919hhttp://dx.doi.org/10.1039/c8cs00919h
DeBlase C. R.; Silberstein K. E.; Truong T. T.; Abruna H. D.; Dichtel W. R. β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc., 2013, 135(45), 16821-16824. doi:10.1021/ja409421dhttp://dx.doi.org/10.1021/ja409421d
Evans A. M.; Bradshaw N. P.; Litchfield B.; Strauss M. J.; Seckman B.; Ryder M. R.; Castano I.; Gilmore C.; Gianneschi N. C.; Mulzer C. R.; Hersam M. C.; Dichtel W. R. High-sensitivity acoustic molecular sensors based on large-area, spray-coated 2D covalent organic frameworks. Adv. Mater., 2020, 32(42), e2004205. doi:10.1002/adma.202004205http://dx.doi.org/10.1002/adma.202004205
Wang H.; Zeng Z.; Xu P.; Li L.; Zeng G.; Xiao R.; Tang Z.; Huang D.; Tang L.; Lai C.; Jiang D.; Liu Y.; Yi H.; Qin L.; Ye S.; Ren X.; Tang W. Recent progress in covalent organic framework thin films: fabrications, applications and perspectives. Chem. Soc. Rev., 2019, 48(2), 488-516. doi:10.1039/c8cs00376ahttp://dx.doi.org/10.1039/c8cs00376a
Diercks C. S.; Yaghi O. M. The atom, the molecule, and the covalent organic framework. Science, 2017, 355(6328), eaal1585. doi:10.1126/science.aal1585http://dx.doi.org/10.1126/science.aal1585
Geng K.; He T.; Liu R.; Dalapati S.; Tan K. T.; Li Z.; Tao S.; Gong Y.; Jiang Q.; Jiang D. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev., 2020, 120(16), 8814-8933. doi:10.1021/acs.chemrev.9b00550http://dx.doi.org/10.1021/acs.chemrev.9b00550
Huang N.; Wang P.; Jiang D. Covalent organic frameworks: a materials platform for structural and functional designs. Nat. Rev. Mater., 2016, 1(10), 16068. doi:10.1038/natrevmats.2016.68http://dx.doi.org/10.1038/natrevmats.2016.68
Liu R.; Tan K. T.; Gong Y.; Chen Y.; Li Z.; Xie S.; He T.; Lu Z.; Yang H.; Jiang D. Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications. Chem. Soc. Rev., 2021, 50(1), 120-242. doi:10.1039/d0cs00620chttp://dx.doi.org/10.1039/d0cs00620c
王珊, 冯霄, 王博. 共价有机框架材料的设计与制备. 科学通报, 2018, 63(22), 2229-2245.
Côté A. P.; Benin A. I.; Ockwig N. W.; O'Keeffe M.; Matzger A. J.; Yaghi O. M. Porous, crystalline, covalent organic frameworks. Science, 2005, 310(5751), 1166-1170. doi:10.1126/science.1120411http://dx.doi.org/10.1126/science.1120411
Han X. H.; Gong K.; Huang X.; Yang J. W.; Feng X.; Xie J.; Wang B. Syntheses of covalent organic frameworks via a one-pot suzuki coupling and schiff 's base reaction for C2H4/C3H6 separation. Angew. Chem. Int. Ed., 2022, 61(25), e202202912. doi:10.1002/anie.202202912http://dx.doi.org/10.1002/anie.202202912
Ying Y.; Peh S. B.; Yang H.; Yang Z.; Zhao D. Ultrathin covalent organic framework membranes via a multi-interfacial engineering strategy for gas separation. Adv. Mater., 2022, 34(25), 2104946. doi:10.1002/adma.202270191http://dx.doi.org/10.1002/adma.202270191
Ying Y.; Tong M.; Ning S.; Ravi S. K.; Peh S. B.; Tan S. C.; Pennycook S. J.; Zhao D. Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. J. Am. Chem. Soc., 2020, 142(9), 4472-4480. doi:10.1021/jacs.9b13825http://dx.doi.org/10.1021/jacs.9b13825
Zhang J.; Liu L.; Zheng C.; Li W.; Wang C.; Wang T. Embedded nano spin sensor for in situ probing of gas adsorption inside porous organic frameworks. Nat. Commun., 2023, 14(1), 4922. doi:10.1038/s41467-023-40683-2http://dx.doi.org/10.1038/s41467-023-40683-2
Zhang Z.; Kang C.; Peh S. B.; Shi D.; Yang F.; Liu Q.; Zhao D. Efficient adsorption of acetylene over CO2 in bioinspired covalent organic frameworks. J. Am. Chem. Soc., 2022, 144(33), 14992-14996. doi:10.1021/jacs.2c05309http://dx.doi.org/10.1021/jacs.2c05309
Zhang Q.; Gao S.; Guo Y.; Wang H.; Wei J.; Su X.; Zhang H.; Liu Z.; Wang J. Designing covalent organic frameworks with Co-O4 atomic sites for efficient CO2 photoreduction. Nat. Commun., 2023, 14(1), 1147. doi:10.1038/s41467-023-36779-4http://dx.doi.org/10.1038/s41467-023-36779-4
Liu F.; Zhou P.; Hou Y.; Tan H.; Liang Y.; Liang J.; Zhang Q.; Guo S.; Tong M.; Ni J. Covalent organic frameworks for direct photosynthesis of hydrogen peroxide from water, air and sunlight. Nat. Commun., 2023, 14(1), 4344. doi:10.1038/s41467-023-40007-4http://dx.doi.org/10.1038/s41467-023-40007-4
Chen D.; Chen W.; Wu Y.; Wang L.; Wu X.; Xu H.; Chen L. Covalent organic frameworks containing dual O2 reduction centers for overall photosynthetic hydrogen peroxide production. Angew. Chem. Int. Ed. 2023, 62, e202217479;. doi:10.1002/anie.202217479http://dx.doi.org/10.1002/anie.202217479
Qian Y.; Han Y.; Zhang X.; Yang G.; Zhang G.; Jiang H. Computation-based regulation of excitonic effects in donor-acceptor covalent organic frameworks for enhanced photocatalysis. Nat. Commun., 2023, 14(1), 3083. doi:10.1038/s41467-023-38884-whttp://dx.doi.org/10.1038/s41467-023-38884-w
He T.; Zhao Z.; Liu R.; Liu X.; Ni B.; Wei Y.; Wu Y.; Yuan W.; Peng H.; Jiang Z. Zhao,Y. Porphyrin-based covalent organic frameworks anchoring au single atoms for photocatalytic nitrogen fixation. J. Am. Chem. Soc. 2023, 145(11), 6057-6066. doi:10.1021/jacs.2c10233http://dx.doi.org/10.1021/jacs.2c10233
孔祥宇, 廖力, 卢灿忠, 方千荣. 共价有机框架-杂多酸复合材料用于非均相催化烯烃环氧化. 高等学校化学学报, 2023, 44(12), 34-41.
Yang J.; Tu B.; Zhang G.; Liu P.; Hu K.; Wang J.; Yan Z.; Huang Z.; Fang M.; Hou J.; Fang Q.; Qiu X.; Li L.; Tang Z. Advancing osmotic power generation by covalent organic framework monolayer. Nat. Nanotechnol., 2022, 17(6), 622-628. doi:10.1038/s41565-022-01110-7http://dx.doi.org/10.1038/s41565-022-01110-7
Yan X.; Wang F.; Su X.; Ren J.; Qi M.; Bao P.; Chen W.; Peng C.; Chen L. A redox-active covalent organic framework with highly accessible aniline-fused quinonoid units affords efficient proton charge storage. Adv. Mater., 2023, 35, 2305037. doi:10.1002/adma.202305037http://dx.doi.org/10.1002/adma.202305037
Xu Y.; Cai P.; Chen K.; Chen Q. Wen, Z. Chen, L. Hybrid acid/alkali all covalent organic frameworks battery. Angew. Chem. Int. Ed., 2023, 62, e202215584. doi:10.1002/anie.202215584http://dx.doi.org/10.1002/anie.202215584
Hou S.; Ji W.; Chen J.; Teng Y.; Wen L.; Jiang L. Free-standing covalent organic framework membrane for high-efficiency salinity gradient energy conversion. Angew. Chem. Int. Ed., 2021, 60(18), 9925-9930. doi:10.1002/anie.202100205http://dx.doi.org/10.1002/anie.202100205
Xian W.; Zuo X.; Zhu C.; Guo Q.; Meng Q. W.; Zhu X.; Wang S.; Ma S.; Sun Q. Anomalous thermo-osmotic conversion performance of ionic covalent-organic-framework membranes in response to charge variations. Nat. Commun., 2022, 13(1), 3386. doi:10.1038/s41467-022-31183-whttp://dx.doi.org/10.1038/s41467-022-31183-w
Chen S.; Zhu C.; Xian W.; Liu X.; Liu X.; Zhang Q.; Ma S.; Sun Q. Imparting ion selectivity to covalent organic framework membranes using de novo assembly for blue energy harvesting. J. Am. Chem. Soc., 2021, 143(25), 9415-9422. doi:10.1021/jacs.1c02090http://dx.doi.org/10.1021/jacs.1c02090
Rashid R. B.; Evans A. M.; Hall L. A.; Dasari R. R.; Roesner E. K.; Marder S. R.; D'Allesandro D. M.; Dichtel W. R.; Rivnay J. A semiconducting two-dimensional polymer as an organic electrochemical transistor active layer. Adv. Mater., 2022, 34(21), 2110703. doi:10.1002/adma.202110703http://dx.doi.org/10.1002/adma.202110703
Li C.; Wang Y.; Zou Y.; Zhang X.; Dong H.; Hu W. Two-dimensional conjugated polymer synthesized by interfacial suzuki reaction: towards electronic device applications. Angew. Chem. Int. Ed., 2020, 59(24), 9403-9407. doi:10.1002/anie.202002644http://dx.doi.org/10.1002/anie.202002644
Cheng G.; Zhang A.; Zhao Z.; Chai Z.; Hu B.; Han B.; Ai Y.; Wang X. Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity. Sci. Bull., 2021, 66(19), 1994-2001. doi:10.1016/j.scib.2021.05.012http://dx.doi.org/10.1016/j.scib.2021.05.012
Yang H.; Hao M.; Xie Y.; Liu X.; Liu Y.; Chen Z.; Wang X.; Waterhouse G. I. N.; Ma S. Tuning local charge distribution in multicomponent covalent organic frameworks for dramatically enhanced photocatalytic uranium extraction. Angew. Chem. Int. Ed., 2023, 62(30), e202303129. doi:10.1002/anie.202303129http://dx.doi.org/10.1002/anie.202303129
Chen Z.; Wang J.; Hao M.; Xie Y.; Liu X.; Yang H.; Waterhouse G. I. N.; Wang X.; Ma S. Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance. Nat. Commun., 2023, 14(1), 1106. doi:10.1038/s41467-023-36710-xhttp://dx.doi.org/10.1038/s41467-023-36710-x
He T.; Geng K.; Jiang D. All sp2 carbon covalent organic frameworks. Trends. Chem., 2021, 3(6), 431-444. doi:10.1016/j.trechm.2021.03.008http://dx.doi.org/10.1016/j.trechm.2021.03.008
Xu S.; Richter M.; Feng X. Vinylene-linked two-dimensional covalent organic frameworks: synthesis and functions. Acc. Mater. Res., 2021, 2(4), 252-265. doi:10.1021/accountsmr.1c00017http://dx.doi.org/10.1021/accountsmr.1c00017
Zhang, T.; Zhang, G.; Chen, L. 2D conjugated covalent organic frameworks: defined synthesis and tailor-made functions. Acc. Chem. Res., 2022, 55(6), 795-808. doi:10.1021/acs.accounts.1c00693http://dx.doi.org/10.1021/acs.accounts.1c00693
Xu Y.; Ren G.; Zhang D.; Sun L.; Zhao Y. Fully conjugated covalent organic frameworks: synthesis, structures and applications. Chinese J. Chem., 2023, 41(23), 3447-3472. doi:10.1002/cjoc.202300244http://dx.doi.org/10.1002/cjoc.202300244
刘建川, 李翠艳, 刘耀祖, 王钰杰, 方千荣. 高稳定二维联咔唑sp2碳共轭共价有机框架材料用于高效电催化氧还原. 化学学报, 2023, 81(8), 884-890.
魏颖, 王家成, 李玥, 汪涛, 马述威, 解令海. 碳碳键链接的二维共价有机框架研究进展. 化学学报, 2024, 82(1), 75-102.
Acharjya A.; Pachfule P.; Roeser J.; Schmitt F. J.; Thomas A. Vinylene-linked covalent organic frameworks by base-catalyzed aldol condensation. Angew. Chem. Int. Ed., 2019, 58(42), 14865-14870. doi:10.1002/anie.201905886http://dx.doi.org/10.1002/anie.201905886
Jadhav T.; Fang Y.; Liu C. H.; Dadvand A.; Hamzehpoor E.; Patterson W.; Jonderian A.; Stein R. S.; Perepichka D. F. Transformation between 2D and 3D covalent organic frameworks via reversible [2+2] cycloaddition. J. Am. Chem. Soc., 2020, 142(19), 8862-8870. doi:10.1021/jacs.0c01990http://dx.doi.org/10.1021/jacs.0c01990
Mo C.; Yang M.; Sun F.; Jian J.; Zhong L.; Fang Z.; Feng J.; Yu D. Alkene-linked covalent organic frameworks boosting photocatalytic hydrogen evolution by efficient charge separation and transfer in the presence of sacrificial electron donors. Adv. Sci. 2020, 7, 1902988. doi:10.1002/advs.201902988http://dx.doi.org/10.1002/advs.201902988
Cui W. R.; Zhang C. R.; Jiang W.; Li F. F.; Liang R. P.; Liu J.; Qiu J. D. Regenerable and stable sp2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium. Nat. Commun., 2020, 11(1), 436. doi:10.1038/s41467-020-14289-xhttp://dx.doi.org/10.1038/s41467-020-14289-x
Ma S.; Deng T.; Li Z.; Zhang Z.; Jia J.; Wu G.; Xia H.; Yang S. W.; Liu X. Photocatalytic hydrogen production on a sp2-carbon-linked covalent organic framework. Angew. Chem. Int. Ed., 2022, 61(42), e202208919. doi:10.1002/anie.202208919http://dx.doi.org/10.1002/anie.202208919
Zhu L.; Zhang Q.; Meng F.; Li M.; Liang Q.; Zhang F. Narrow‐pore engineering of vinylene‐linked covalent organic frameworks with weak interaction‐triggered multiple responses. Angew. Chem. Int. Ed., 2023, 135(42), e202309125. doi:10.1002/anie.202309125http://dx.doi.org/10.1002/anie.202309125
Wang Z.; Yang Y.; Zhao Z.; Zhang P.; Zhang Y.; Liu J.; Ma S.; Cheng P.; Chen Y.; Zhang Z. Green synthesis of olefin-linked covalent organic frameworks for hydrogen fuel cell applications. Nat. Commun., 2021, 12(1), 1982. doi:10.1038/s41467-021-22288-9http://dx.doi.org/10.1038/s41467-021-22288-9
Dai L.; Dong A.; Meng X.; Liu H.; Li Y.; Li P.; Wang B. Enhancement of visible-light-driven hydrogen evolution activity of 2d pi-conjugated bipyridine-based covalent organic frameworks via post-protonation. Angew. Chem. Int. Ed., 2023, 62(15), e202300224. doi:10.1002/anie.202300224http://dx.doi.org/10.1002/anie.202300224
Jadhav T.; Fang Y.; Patterson W.; Liu C. H.; Hamzehpoor E.; Perepichka D. F. 2D poly(arylene vinylene) covalent organic frameworks via aldol condensation of trimethyltriazine. Angew. Chem. Int. Ed., 2019, 58(39), 13753-13757. doi:10.1002/anie.201906976http://dx.doi.org/10.1002/anie.201906976
Zhuang X.; Zhao W.; Zhang F.; Cao Y.; Liu F.; Bi S.; Feng X. A two-dimensional conjugated polymer framework with fully sp2-bonded carbon skeleton. Polym. Chem., 2016, 7(25), 4176-4181. doi:10.1039/c6py00561fhttp://dx.doi.org/10.1039/c6py00561f
Jin E.; Asada M.; Xu Q.; Dalapati S.; Addicoat M. A.; Brady M. A.; Xu H.; Nakamura T.; Heine T.; Chen Q.; Jiang D. Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science, 2017, 357(6352), 673-676. doi:10.1126/science.aan0202http://dx.doi.org/10.1126/science.aan0202
Xu J.; He Y.; Bi S.; Wang M.; Yang P.; Wu D.; Wang J.; Zhang F. An olefin-linked covalent organic framework as a flexible thin-film electrode for a high-performance micro-supercapacitor. Angew. Chem. Int. Ed., 2019, 58(35), 12065-12069. doi:10.1002/anie.201905713http://dx.doi.org/10.1002/anie.201905713
Lyu H.; Diercks C. S.; Zhu C.; Yaghi O. M. Porous crystalline olefin-linked covalent organic frameworks. J. Am. Chem. Soc., 2019, 141(17), 6848-6852. doi:10.1021/jacs.9b02848http://dx.doi.org/10.1021/jacs.9b02848
Wang Z.; Zhang Y.; Lin E.; Geng S.; Wang M.; Liu J.; Chen Y.; Cheng P.; Zhang Z. Kilogram-scale fabrication of a robust olefin-linked covalent organic framework for separating ethylene from a ternary C2 hydrocarbon mixture. J. Am. Chem. Soc., 2023, 145(39), 21483-21490. doi:10.1021/jacs.3c07224http://dx.doi.org/10.1021/jacs.3c07224
Pastoetter D. L.; Xu S.; Borrelli M.; Addicoat M.; Biswal B. P.; Paasch S.; Dianat A.; Thomas H.; Berger R.; Reineke S.; Brunner E.; Cuniberti G.; Richter M.; Feng X. Synthesis of vinylene-linked two-dimensional conjugated polymers via the horner-wadsworth-emmons reaction. Angew. Chem. Int. Ed., 2020, 59(52), 23620-23625. doi:10.1002/anie.202010398http://dx.doi.org/10.1002/anie.202010398
Li S.; Geng Y.; Teng B.; Xu S.; Petkov P. S.; Liao Z.; Jost B.; Liu Y.; Feng X.; Wu B.; Zhang T. Nature-inspired pyrylium cation-based vinylene-linked two-dimensional covalent organic framework for efficient sunlight-driven water purification. Chem. Mater., 2023, 35(4), 1594-1600. doi:10.1021/acs.chemmater.2c03083http://dx.doi.org/10.1021/acs.chemmater.2c03083
Fu G.; Yang D.; Xu S.; Li S.; Zhao Y.; Yang H.; Wu D.; Petkov P. S.; Lan Z.; Wang X.; Zhang T. Construction of thiadiazole-bridged sp2-carbon-conjugated co-valent organic frameworks with diminished excitation binding energy toward superior photocatalysis. J. Am. Chem. Soc., 2024, 146, 2, 1318-1325. doi:10.1021/jacs.3c08755http://dx.doi.org/10.1021/jacs.3c08755
Li S.; Ma R.; Xu S.; Zheng T.; Fu G.; Wu Y.; Liao Z.; Kuang Y.; Hou Y.; Wang D.; Petkov P. S.; Simeonova K.; Feng X.; Wu L. Z.; Li X. B.; Zhang T. Direct construction of isomeric benzobisoxazole-vinylene-linked covalent organic frameworks with distinct photocatalytic properties. J. Am. Chem. Soc., 2022, 144(30), 13953-13960. doi:10.1021/jacs.2c06042http://dx.doi.org/10.1021/jacs.2c06042
Wu D.; Che Q.; He H.; El-Khouly M. E.; Huang S.; Zhuang X.; Zhang B.; Chen Y. Room-temperature interfacial synthesis of vinylene-bridged two-dimensional covalent organic framework thin film for nonvolatile memory. ACS Mater., 2023, 5(3), 874-883. doi:10.1021/acsmaterialslett.2c01047http://dx.doi.org/10.1021/acsmaterialslett.2c01047
Wang K.; Yang H.; Liao Z.; Li S.; Hambsch M.; Fu G.; Mannsfeld S. C. B.; Sun Q.; Zhang T. Monolayer-assisted surface-initiated schiff-base-mediated aldol polycondensation for the synthesis of crystalline sp2 carbon-conjugated covalent organic framework thin films. J. Am. Chem. Soc., 2023, 145(9), 5203-5210. doi:10.1021/jacs.2c12186http://dx.doi.org/10.1021/jacs.2c12186
Yan H.; Kou Z.; Li S.; Zhang T. Synthesis of sp2 carbon-conjugated covalent organic framework thin-films via copper-surface-mediated knoevenagel polycondensation. Small, 2023, 19(35), 2207972. doi:10.1002/smll.202207972http://dx.doi.org/10.1002/smll.202207972
蒋成浩, 冯霄, 王博. 共价有机框架膜的制备及其在海水淡化和水处理领域的研究进展. 化学学报, 2020, 78(6), 466-477.
许方依, 彭宇, 宋君杰, 苏保卫. 共价有机框架材料在分离膜制备中的应用研究进展. 膜科学与技术, 2023, 43(5), 136-149.
Zhao Y.; Li S.; Fu G.; Yang H.; Li S.; Wu D.; Zhang T. Construction of layer-blocked covalent organic framework heterogenous films via surface-initiated polycondensations with strongly enhanced photocatalytic properties. ACS Cent. Sci., 2024, Doi: 10.1021/acscentsci.3c01195.http://dx.doi.org/10.1021/acscentsci.3c01195.
She P.; Qin Y.; Wang X.; Zhang Q. Recent progress in external-stimulus-responsive 2D covalent organic frameworks. Adv. Mater., 2022, 34(22), e2101175. doi:10.1002/adma.202101175http://dx.doi.org/10.1002/adma.202101175
Zhao X.; Pachfule P.; Thomas A. Covalent organic frameworks (COFs) for electrochemical applications. Chem. Soc. Rev., 2021, 50(12), 6871-6913. doi:10.1039/d0cs01569ehttp://dx.doi.org/10.1039/d0cs01569e
Guo L.; Yang L.; Li M.; Kuang L.; Song Y.; Wang L. Covalent organic frameworks for fluorescent sensing: recent developments and future challenges. Coord. Chem. Rev., 2021, 440, 213957. doi:10.1016/j.ccr.2021.213957http://dx.doi.org/10.1016/j.ccr.2021.213957
Xu S.; Sun H.; Addicoat M.; Biswal B.; He F.; Park S.; Paasch S.; Zhang T.; Sheng W.; Brunner E.; Hou Y.; Richter M.; Feng X. Thiophene-bridged donor-acceptor sp2-carbon-linked 2D Conjugated polymers as photocathodes for water reduction. Adv. Mater., 2021, 33, 2006274. doi:10.1002/adma.202006274http://dx.doi.org/10.1002/adma.202006274
Wang Y.; Hao W.; Liu H.; Chen R.; Pan Q.; Li Z.; Zhao Y. Facile construction of fully sp2-carbon conjugated two-dimensional covalent organic frameworks containing benzobisthiazole units. Nat. Commun., 2022, 13, 100. doi:10.1038/s41467-021-27573-1http://dx.doi.org/10.1038/s41467-021-27573-1
Li Z.; Deng T.; Ma S.; Zhang Z.; Wu G.; Wang J.; Li Q.; Xia H.; Yang S.; Liu X. Three-component donor-π-acceptor covalent-organic frameworks for boosting photocatalytic hydrogen evolution. J. Am. Chem. Soc., 2023, 145(15), 8364-8374.
Jin E.; Geng K.; Lee K. H.; Jiang W.; Li J.; Jiang Q.; Irle S.; Jiang D. Topology-templated synthesis of crystalline porous covalent organic frameworks. Angew. Chem. Int. Ed., 2020, 59(29), 12162-12169. doi:10.1002/anie.202004728http://dx.doi.org/10.1002/anie.202004728
Chen R.; Shi J. L.; Ma Y.; Lin G.; Lang X.; Wang C. Designed synthesis of a 2D porphyrin-based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis. Angew. Chem. Int. Ed., 2019, 58(19), 6430-6434. doi:10.1002/anie.201902543http://dx.doi.org/10.1002/anie.201902543
Li S.; Ma R.; Xu S.; Zheng T.; Wang H.; Fu G.; Yang H.; Hou Y.; Liao Z.; Wu B.; Feng X.; Wu L. Z.; Li X. B.; Zhang T. Two-dimensional benzobisthiazole-vinylene-linked covalent organic frameworks outperform one-dimensional counterparts in photocatalysis. ACS Catal., 2023, 13(2), 1089-1096. doi:10.1021/acscatal.2c05023http://dx.doi.org/10.1021/acscatal.2c05023
Niu C., Zhang C., Liu X., Liang R., Qiu J. Synthesis of propenone-linked covalent organic frameworks via claisen-schmidt reaction for photocatalytic removal of uranium. Nat. Commun.,2023,14, 4420. doi:10.1038/s41467-023-40169-1http://dx.doi.org/10.1038/s41467-023-40169-1
Yang H.; Zhang T.; Xue Q. Recent advances in single-crystalline two-dimensional polymers: synthesis, characterization and challenges. Chin. Chem. Lett, 2022, 33(12), 4989-5000. doi:10.1016/j.cclet.2022.02.030http://dx.doi.org/10.1016/j.cclet.2022.02.030
Zhou Y.; Jiang L. Bioinspired nanoporous membrane for salinity gradient energy harvesting. Joule, 2020, 4(11), 2244-2248. doi:10.1016/j.joule.2020.09.009http://dx.doi.org/10.1016/j.joule.2020.09.009
Aliprandi A.; Pakulski D.; Ciesielski A.; Samorì P. Punctured two-dimensional sheets for harvesting blue energy. ACS Nano, 2017, 11, 10654-10658. doi:10.1021/acsnano.7b06657http://dx.doi.org/10.1021/acsnano.7b06657
Park H. B.; Kamcev J.; Robeson L. M.; Elimelech M.; Freeman B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science, 2017, 356(6343), eaab0530. doi:10.1126/science.aab0530http://dx.doi.org/10.1126/science.aab0530
Zhang Z.; Wen L.; Jiang L. Nanofluidics for osmotic energy conversion. Nat. Rev. Mater., 2021, 6, 622-639. doi:10.1038/s41578-021-00300-4http://dx.doi.org/10.1038/s41578-021-00300-4
Guo Q.; Lai Z.; Zuo X.; Xian W.; Wu S.; Zheng L.; Dai Z.; Wang S.; Sun Q. Photoelectric responsive ionic channel for sustainable energy harvesting. Nat. Commun., 2023, 14, 6702. doi:10.1038/s41467-023-42584-whttp://dx.doi.org/10.1038/s41467-023-42584-w
Zhang L.; Wan S. C.; Zhang J.; Zhang M. J.; Yang Q. C.; Zhang B.; Wang W. Y.; Sun J.; Kwok R. T. K.; Lam J. W. Y.; Deng H.; Sun Z. J.; Tang B. Z. Activation of pyroptosis using aiegen-based sp2 carbon-linked covalent organic frameworks. J. Am. Chem. Soc., 2023, 145(32), 17689-17699. doi:10.1021/jacs.3c04027http://dx.doi.org/10.1021/jacs.3c04027
Fabozzi F. G.; Severin N.; Rabe J. P.; Hecht S. Room temperature on-surface synthesis of a vinylene-linked single layer covalent organic framework. J. Am. Chem. Soc., 2023, 145(33), 18205-18209. doi:10.1021/jacs.3c04730http://dx.doi.org/10.1021/jacs.3c04730
Lin H.; Liu Y.; Wang Z.; Ling L.; Huang H.; Li Q.; Cheng L.; Li Y.; Zhou J.; Wu K.; Zhang J.; Zhou T. Enhanced CO2 photoreduction through spontaneous charge separation in end-capping assembly of heterostructured covalent-organic frameworks. Angew. Chem. Int. Ed., 2022, 61(50), e202214142. doi:10.1002/anie.202214142http://dx.doi.org/10.1002/anie.202214142
Cheng Y. Z.; Ji W.; Hao P. Y.; Qi X. H.; Wu X.; Dou X. M.; Bian X. Y.; Jiang D.; Li F. T.; Liu X. F.; Yang D. H.; Ding X.; Han B. H. A fully conjugated covalent organic framework with oxidative and reductive sites for photocatalytic carbon dioxide reduction with water. Angew. Chem. Int. Ed., 2023, 62(36), e202308523. doi:10.1002/anie.202308523http://dx.doi.org/10.1002/anie.202308523
Ding S. Y.; Dong M.; Wang Y. W.; Chen Y. T.; Wang H. Z.; Su C. Y.; Wang W. Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(ii). J. Am. Chem. Soc., 2016, 138(9), 3031-3037. doi:10.1021/jacs.5b10754http://dx.doi.org/10.1021/jacs.5b10754
Jhulki S.; Evans A. M.; Hao X. L.; Cooper M. W.; Feriante C. H.; Leisen J.; Li H.; Lam D.; Hersam M. C.; Barlow S.; Bredas J. L.; Dichtel W. R.; Marder S. R. Humidity sensing through reversible isomerization of a covalent organic framework. J. Am. Chem. Soc., 2020, 142(2), 783-791. doi:10.1021/jacs.9b08628http://dx.doi.org/10.1021/jacs.9b08628
Li X.; Yadav P.; Loh K. P. Function-oriented synthesis of two-dimensional (2D) covalent organic frameworks—from 3solids toD 2D sheets. Chem. Soc. Rev., 2020, 49(14), 4835-4866. doi:10.1039/d0cs00236dhttp://dx.doi.org/10.1039/d0cs00236d
Zhang H.; Shen P. K. Advances in the high performance polymer electrolyte membranes for fuel cells. Chem. Soc. Rev., 2012, 41(6), 2382-2394. doi:10.1039/c2cs15269jhttp://dx.doi.org/10.1039/c2cs15269j
Montoro C.; Rodriguez-San-Miguel D.; Polo E.; Escudero-Cid R.; Ruiz-Gonzalez M. L.; Navarro J. A. R.; Ocon P.; Zamora F. Ionic conductivity and potential application for fuel cell of a modified imine-based covalent organic framework. J. Am. Chem. Soc., 2017, 139(29), 10079-10086. doi:10.1021/jacs.7b05182http://dx.doi.org/10.1021/jacs.7b05182
Xie Z.; Wang B.; Yang Z.; Yang X.; Yu X.; Xing G.; Zhang Y.; Chen L. Stable 2D heteroporous covalent organic frameworks for efficient ionic conduction. Angew. Chem. Int. Ed., 2019, 58(44), 15742-15746. doi:10.1002/anie.201909554http://dx.doi.org/10.1002/anie.201909554
Shi B.; Pang X.; Lyu B.; Wu H.; Shen J.; Guan J.; Wang X.; Fan C.; Cao L.; Zhu T.; Kong Y.; Liu Y.; Jiang Z. Spacer-engineered ionic channels in covalent organic framework membranes toward ultrafast proton transport. Adv. Mater. 2023, 35, 2211004. doi:10.1002/adma.202211004http://dx.doi.org/10.1002/adma.202211004
Jin E.; Li J.; Geng K.; Jiang Q.; Xu H.; Xu Q.; Jiang D. Designed synthesis of stable light-emitting two-dimensional sp2 carbon-conjugated covalent organic frameworks. Nat. Commun., 2018, 9, 4143. doi:10.1038/s41467-018-06719-8http://dx.doi.org/10.1038/s41467-018-06719-8
0
浏览量
200
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构