浏览全部资源
扫码关注微信
聚合物分子工程国家重点实验室 复旦大学高分子科学系 上海 200438
E-mail: juanpeng@fudan.edu.cn
纸质出版日期:2024-07-20,
网络出版日期:2024-04-16,
收稿日期:2023-12-30,
录用日期:2024-02-06
移动端阅览
骆雪冰, 赵清清, 李琳, 郑浩, 郭亚楠, 彭娟. 溶液浓度对聚(3-丁基噻吩)溶液聚集态和薄膜结晶结构的影响. 高分子学报, 2024, 55(7), 910-920
Luo, X. B.; Zhao, Q. Q.; Li, L.; Zheng, H.; Guo, Y. N.; Peng, J. Concentration effect on the solution-state aggregation and solid-state crystalline structures of poly(3-butylthiophene). Acta Polymerica Sinica, 2024, 55(7), 910-920
骆雪冰, 赵清清, 李琳, 郑浩, 郭亚楠, 彭娟. 溶液浓度对聚(3-丁基噻吩)溶液聚集态和薄膜结晶结构的影响. 高分子学报, 2024, 55(7), 910-920 DOI: 10.11777/j.issn1000-3304.2023.23302.
Luo, X. B.; Zhao, Q. Q.; Li, L.; Zheng, H.; Guo, Y. N.; Peng, J. Concentration effect on the solution-state aggregation and solid-state crystalline structures of poly(3-butylthiophene). Acta Polymerica Sinica, 2024, 55(7), 910-920 DOI: 10.11777/j.issn1000-3304.2023.23302.
共轭聚合物由于其特殊的力学、电性能或光电功能被广泛应用于各种器件中. 在溶液加工过程中,其在溶液中的分子链构象和溶液聚集态会由于记忆效应传递到薄膜中,从而对薄膜凝聚态结构和性能产生重要影响. 基于此,本文工作通过控制聚(3-丁基噻吩)(P3BT)的溶液浓度来调控P3BT在溶液中的链聚集态,进而深入研究溶液聚集态对P3BT薄膜的结晶结构包括晶型和结晶取向的影响,以及不同结晶结构和载流子传输性能的关系. 结果表明,P3BT在低浓度的溶液中链聚集程度较弱,进而在薄膜中形成丁基侧链非交叉式排列的晶型Ⅰ结构,且以edge-on结晶取向为主;而在更高浓度的溶液中形成聚集更强的聚集体,在薄膜中形成丁基侧链交叉式排列的晶型Ⅱ结构,结晶取向为flat-on与edge-on共存. 这些具有不同晶型和结晶取向的P3BT薄膜对有机场效应晶体管(OFET)的器件性能有直接影响.
Conjugated polymers have been widely applied in various optoelectronic devices because of their special mechanical
electric
and optoelectronic properties. Usually
the fabrication of conjugated polymers is based on solution processing
and the conformation and solution aggregation state of conjugated polymers can be transferred to the solid state due to the memory effect. Therefore
the solution-state aggregation of conjugated polymers has an important impact on their crystalline structure and thus property in the film state. In this work
the concentration of poly(3-butylthiophene) (P3BT) solution was adjusted to control the chain aggregation in the solution
which in turn influenced the crystalline structure including form and crystal orientation of P3BT in thin films. Moreover
the correlation between different crystalline structures of P3BT and their charge transport properties based on organic field-effect transistors (OFET) was revealed. It showed P3BT aggregated weakly in low concentrations of solutions and thus produced form I crystals in edge-on orientation in the films
which had non-interdigitated packing of alkyl side chains and a larger side-chain stacking distance. In contrast
stronger aggregation of P3BT chains was observed in the solutions with high concentrations and form Ⅱ crystals in the mixed flat-on and edge-on orientations were produced in the films. These P3BT form Ⅱ crystals had interdigitated side chains and a smaller side-chain stacking distance than that of form Ⅰ. These P3BT films with different forms and crystal orientations were closely related to their charge transport characteristics.
聚噻吩溶液态聚集晶型结晶取向场效应晶体管
PolythiophenesSolution-state aggregationFormCrystal orientationOrganic field-effect transistors
Sirringhaus, H. 25th Anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater., 2014, 26(9), 1319-1335. doi:10.1002/adma.201304346http://dx.doi.org/10.1002/adma.201304346
Callaway C. P.; Liu A. L.; Venkatesh R.; Zheng Y. L.; Lee M.; Meredith J. C.; Grover M.; Risko C.; Reichmanis E. The solution is the solution: data-driven elucidation of solution-to-device feature transfer for π-conjugated polymer semiconductors. ACS Appl. Mater. Interfaces, 2022, 14(3), 3613-3620. doi:10.1021/acsami.1c20994http://dx.doi.org/10.1021/acsami.1c20994
Nikolka M.; Broch K.; Armitage J.; Hanifi D.; Nowack P. J.; Venkateshvaran D.; Sadhanala A.; Saska J.; Mascal M.; Jung S. H.; Lee J. K.; McCulloch I.; Salleo A.; Sirringhaus H. High-mobility, trap-free charge transport in conjugated polymer diodes. Nat. Commun., 2019, 10(1), 2122. doi:10.1038/s41467-019-10188-yhttp://dx.doi.org/10.1038/s41467-019-10188-y
Hou J. H.; Inganäs O.; Friend R. H.; Gao F. Organic solar cells based on non-fullerene acceptors. Nat. Mater., 2018, 17(2), 119-128. doi:10.1038/nmat5063http://dx.doi.org/10.1038/nmat5063
Li S. X.; Zhan L. L.; Sun C. K.; Zhu H. M.; Zhou G. Q.; Yang W. T.; Shi M. M.; Li C. Z.; Hou J. H.; Li Y. F.; Chen H. Z. Highly efficient fullerene-free organic solar cells operate at near zero highest occupied molecular orbital offsets. J. Am. Chem. Soc., 2019, 141(7), 3073-3082. doi:10.1021/jacs.8b12126http://dx.doi.org/10.1021/jacs.8b12126
Yuan Y.; Zhang Y. P.; Cui X.; Zhang J. M. Preparation of poly(3-butylthiophene) form Ⅱ crystal by low-temperature aging and a proposal for form II-to-form I transition mechanism. Polymer, 2016, 105, 88-95. doi:10.1016/j.polymer.2016.10.030http://dx.doi.org/10.1016/j.polymer.2016.10.030
Li J. L.; Xue M. L.; Xue N.; Li H. H.; Zhang L.; Ren Z. J.; Yan S. K.; Sun X. L. Highly anisotropic P3HT film fabricated via epitaxy on an oriented polyethylene film and solvent vapor treatment. Langmuir, 2019, 35(24), 7841-7847. doi:10.1021/acs.langmuir.9b00402http://dx.doi.org/10.1021/acs.langmuir.9b00402
Son S. Y.; Kim Y.; Lee J.; Lee G. Y.; Park W. T.; Noh Y. Y.; Park C. E.; Park T. High-field-effect mobility of low-crystallinity conjugated polymers with localized aggregates. J. Am. Chem. Soc., 2016, 138(26), 8096-8103. doi:10.1021/jacs.6b01046http://dx.doi.org/10.1021/jacs.6b01046
Li J. L.; Li H. H.; Ren Z. J.; Yan S. K.; Sun X. L. Differentiation of electric response in highly oriented regioregular poly(3-hexylthiophene) under anisotropic strain. ACS Appl. Mater. Interfaces, 2021, 13(2), 2944-2951. doi:10.1021/acsami.0c19199http://dx.doi.org/10.1021/acsami.0c19199
尹悦, 翟大龙, 陈舒雯, 尚鑫, 李立心, 彭娟. 全共轭聚噻吩类和聚硒吩类嵌段共聚物的凝聚态结构调控. 高分子学报, 2020, 51(5), 434-447. doi:10.11777/j.issn1000-3304.2020.19220http://dx.doi.org/10.11777/j.issn1000-3304.2020.19220
Agbolaghi S.; Abbaspoor S.; Massoumi B.; Sarvari R.; Sattari S.; Aghapour S.; Charoughchi S. Conversion of face-on orientation to edge-on/flat-on in induced-crystallization of poly(3-hexylthiophene) via functionalization/grafting of reduced graphene oxide with thiophene adducts. Macromol. Chem. Phys., 2018, 219(4), 1700484. doi:10.1002/macp.201700484http://dx.doi.org/10.1002/macp.201700484
Ren Z. J.; Zhang X.; Li H. H.; Sun X. L.; Yan S. K. A facile way to fabricate anisotropic P3HT films by combining epitaxy and electrochemical deposition. Chem. Commun., 2016, 52(73), 10972-10975. doi:10.1039/c6cc05522bhttp://dx.doi.org/10.1039/c6cc05522b
Son S. Y.; Park T.; You W. Understanding of face-on crystallites transitioning to edge-on crystallites in thiophene-based conjugated polymers. Chem. Mater., 2021, 33(12), 4541-4550. doi:10.1021/acs.chemmater.1c00946http://dx.doi.org/10.1021/acs.chemmater.1c00946
Luo L. X.; Huang W. N.; Yang C. L.; Zhang J.; Zhang Q. C. Recent advances on π-conjugated polymers as active elements in high performance organic field-effect transistors. Front. Phys., 2021, 16(3), 33500. doi:10.1007/s11467-020-1045-6http://dx.doi.org/10.1007/s11467-020-1045-6
Yuan Y.; Zhang J. M.; Sun J. Q. Effect of solvent evaporation rate on order-to-disorder phase transition behavior of regioregular poly(3-butylthiophene). Macromolecules, 2011, 44(15), 6128-6135. doi:10.1021/ma200945jhttp://dx.doi.org/10.1021/ma200945j
Lu G.; Li L.; Yang X. Achieving perpendicular alignment of rigid polythiophene backbones to the substrate by using solvent-vapor treatment. Adv. Mater., 2007, 19(21), 3594-3598. doi:10.1002/adma.200700014http://dx.doi.org/10.1002/adma.200700014
Rahimi K.; Botiz I.; Stingelin N.; Kayunkid N.; Sommer M.; Koch F. P. V.; Nguyen H.; Coulembier O.; Dubois P.; Brinkmann M.; Reiter G. Controllable processes for generating large single crystals of poly(3-hexylthiophene). Angew. Chem. Int. Ed., 2012, 51(44), 11131-11135. doi:10.1002/anie.201205653http://dx.doi.org/10.1002/anie.201205653
Buono A.; Son N. H.; Raos G.; Gila L.; Cominetti A.; Catellani M.; Meille S. V. Form II poly(3-butylthiophene): crystal structure and preferred orientation in spherulitic thin films. Macromolecules, 2010, 43(16), 6772-6781. doi:10.1021/ma101162xhttp://dx.doi.org/10.1021/ma101162x
Li S. J.; Wang S. S.; Zhang B. H.; Ye F.; Tang H. W.; Chen Z. B.; Yang X. N. Synergism of molecular weight, crystallization and morphology of poly(3-butylthiophene) for photovoltaic applications. Org. Electron., 2014, 15(2), 414-427. doi:10.1016/j.orgel.2013.11.036http://dx.doi.org/10.1016/j.orgel.2013.11.036
Park H.; Han M. J.; Kim Y.; Kim E. J.; Kim H. J.; Yoon D. K.; Kim B. J. Regioregularity-dependent crystalline structures and thermal transitions in poly(3-dodecylthiophene)s. Chem. Mater., 2021, 33(9), 3312-3320. doi:10.1021/acs.chemmater.1c00466http://dx.doi.org/10.1021/acs.chemmater.1c00466
Müller C.; Zhigadlo N. D.; Kumar A.; Baklar M. A.; Karpinski J.; Smith P.; Kreouzis T.; Stingelin N. Enhanced charge-carrier mobility in high-pressure-crystallized poly(3-hexylthiophene). Macromolecules, 2011, 44(6), 1221-1225. doi:10.1021/ma102529fhttp://dx.doi.org/10.1021/ma102529f
Wu Z. Y.; Petzold A.; Henze T.; Thurn-Albrecht T.; Lohwasser R. H.; Sommer M.; Thelakkat M. Temperature and molecular weight dependent hierarchical equilibrium structures in semiconducting poly(3-hexylthiophene). Macromolecules, 2010, 43(10), 4646-4653. doi:10.1021/ma902566hhttp://dx.doi.org/10.1021/ma902566h
Wei N.; Zhu B. Y.; He J. X.; Shan H. T.; Zhou J. J.; Huo H. Controlling the organization and stretchability of poly(3-butylthiophene) spherulites. Soft Matter, 2021, 17(39), 8850-8857. doi:10.1039/d1sm00486ghttp://dx.doi.org/10.1039/d1sm00486g
刘畅, 刘国明, 王笃金. 共轭高分子链构象和溶液聚集结构研究进展. 化学通报, 2021, 84(12), 1250-1262. doi:10.3969/j.issn.0441-3776.2021.12.hxtb2202112001http://dx.doi.org/10.3969/j.issn.0441-3776.2021.12.hxtb2202112001
Li H. X.; Yang H. H.; Zhang L.; Wang S. C.; Chen Y.; Zhang Q.; Zhang J. D.; Tian H.; Han Y. C. Optimizing the crystallization behavior and film morphology of donor-acceptor conjugated semiconducting polymers by side-chain-solvent interaction in nonpolar solvents. Macromolecules, 2021, 54 (22), 10557-10573. doi:10.1021/acs.macromol.1c01347http://dx.doi.org/10.1021/acs.macromol.1c01347
Yao Z. F.; Wang Z. Y.; Wu H. T.; Lu Y.; Li Q. Y.; Zou L.; Wang J. Y.; Pei J. Ordered solid-state microstructures of conjugated polymers arising from solution-state aggregation. Angew. Chem. Int. Ed., 2020, 59(40), 17467-17471. doi:10.1002/anie.202007589http://dx.doi.org/10.1002/anie.202007589
李其易, 雷霆, 姚泽凡, 王婕妤, 裴坚. 共轭高分子的多级组装. 高分子学报, 2019, 50(1), 1-12. doi:10.11777/j.issn1000-3304.2018.18223http://dx.doi.org/10.11777/j.issn1000-3304.2018.18223
Cao X. X.; Han Y. C. Control over the aggregated structure of donor-acceptor conjugated polymer films for high-mobility organic field-effect transistors. Aggregate, 2024, doi: 10.1002/agt2.501.http://dx.doi.org/10.1002/agt2.501.
Yokoyama A.; Miyakoshi R.; Yokozawa T. Chain-growth polymerization for poly(3-hexylthiophene) with a defined molecular weight and a low polydispersity. J. Am. Chem. Soc., 2004, 37(4), 1169-1171. doi:10.1021/ma035396ohttp://dx.doi.org/10.1021/ma035396o
Tkachov R.; Senkovskyy V.; Komber H.; Sommer J. U.; Kiriy A. Random catalyst walking along polymerized poly(3-hexylthiophene) chains in Kumada catalyst-transfer polycondensation. J. Am. Chem. Soc., 2010, 132(22), 7803-7810. doi:10.1021/ja102210rhttp://dx.doi.org/10.1021/ja102210r
Braga D.; Horowitz G. High-performance organic field-effect transistors. Adv. Mater., 2009, 21(14-15), 1473-1486. doi:10.1002/adma.200802733http://dx.doi.org/10.1002/adma.200802733
Qu Y. P.; Su Q.; Li S. J.; Lu G. H.; Zhou X.; Zhang J. D.; Chen Z. B.; Yang X. N. H-aggregated form II spherulite of poly(3-butylthiophene) grown from solution. ACS Macro Lett., 2012, 1(11), 1274-1278. doi:10.1021/mz300430hhttp://dx.doi.org/10.1021/mz300430h
Xu W. L.; Zeng P.; Wu B.; Zheng F.; Zhu F. R.; Smith T. A.; Ghiggino K. P.; Hao X. T. Effects of processing solvent on the photophysics and nanomorphology of poly(3nanowires-butyl-thiophene):PCBM blends. J. Phys. Chem. Lett., 2016, 7(10), 1872-1879. doi:10.1021/acs.jpclett.6b00808http://dx.doi.org/10.1021/acs.jpclett.6b00808
Spano F. C. The spectral signatures of Frenkel polarons in H- and J-aggregates. Acc. Chem. Res., 2010, 43(3), 429-439. doi:10.1021/ar900233vhttp://dx.doi.org/10.1021/ar900233v
Wang H. Y.; Xu Y. Z.; Yu X. H.; Xing R. B.; Liu J. G.; Han Y. C. Structure and morphology control in thin films of conjugated polymers for an improved charge transport. Polymers, 2013, 5(4), 1272-1324. doi:10.3390/polym5041272http://dx.doi.org/10.3390/polym5041272
Niles E. T.; Roehling J. D.; Yamagata H.; Wise A. J.; Spano F. C.; Moulé A. J.; Grey J. K. J-aggregate behavior in poly-3-hexylthiophene nanofibers. J. Phys. Chem. Lett., 2012, 3(2), 259-263. doi:10.1021/jz201509hhttp://dx.doi.org/10.1021/jz201509h
Lim D. H.; Kim Y. J.; Kim Y. A.; Hwang K.; Park J. J.; Kim D. Y. Structural insight into aggregation and orientation of TPD-based conjugated polymers for efficient charge-transporting properties. Chem. Mater., 2019, 31(13), 4629-4638. doi:10.1021/acs.chemmater.8b04605http://dx.doi.org/10.1021/acs.chemmater.8b04605
Ma G. R.; Leng M. W.; Li S.; Cao Z. Q.; Cao Y. R.; Tabor D. P.; Fang L.; Gu X. D. Robust chain aggregation of low-entropy rigid ladder polymers in solution. J. Mater. Chem. C, 2022, 10(37), 13896-13904. doi:10.1039/d2tc00761dhttp://dx.doi.org/10.1039/d2tc00761d
Yao Z. F.; Zheng Y. Q.; Li Q. Y.; Lei T.; Zhang S.; Zou L.; Liu H. Y.; Dou J. H.; Lu Y.; Wang J. Y.; Gu X. D.; Pei J. Wafer-scale fabrication of high-performance n-type polymer monolayer transistors using a multi-level self-assembly strategy. Adv. Mater., 2019, 31(7), 1806747. doi:10.1002/adma.201806747http://dx.doi.org/10.1002/adma.201806747
Shin I.; Ahn H.; Yun J. H.; Jo J. W.; Park S.; Joe S. Y.; Bang J.; Son H. J. High-performance and uniform 1 cm2 polymer solar cells with D1-A-D2-A-type random terpolymers. Adv. Energy Mater., 2018, 8(7), 1701405. doi:10.1002/aenm.201870028http://dx.doi.org/10.1002/aenm.201870028
Khasbaatar A.; Cheng A.; Jones A. L.; Kwok J. J.; Park S. K.; Komar J. K.; Lin O.; Jackson N. E.; Chen Q.; DeLongchamp D. M.; Reynolds J. R.; Diao Y. Solution aggregate structures of donor polymers determine the morphology and processing resiliency of non-fullerene organic solar cells. Chem. Mater., 2023, 35(7), 2713-2729. doi:10.1021/acs.chemmater.2c02141http://dx.doi.org/10.1021/acs.chemmater.2c02141
Xiao Y.; Lu X. Morphology of organic photovoltaic non-fullerene acceptors investigated by grazing incidence X-ray scattering techniques. Mater. Today Nano, 2019, 5, 100030. doi:10.1016/j.mtnano.2019.100030http://dx.doi.org/10.1016/j.mtnano.2019.100030
Lu G. H.; Li L. G.; Li S. J.; Qu Y. P.; Tang H. W.; Yang X. N. Constructing thin polythiophene film composed of aligned lamellae via controlled solvent vapor treatment. Langmuir, 2009, 25(6), 3763-3768. doi:10.1021/la803470uhttp://dx.doi.org/10.1021/la803470u
冯琳琳, 顾鹏程, 姚奕帆, 董焕丽, 胡文平. 高迁移率聚合物半导体材料. 科学通报, 2015, 60(23), 2169-2189. doi:10.1360/n972015-00402http://dx.doi.org/10.1360/n972015-00402
Tripathi A. S. M.; Kumari N.; Nagamatsu S.; Hayase S.; Pandey S. S. Facile fabrication of large area oriented conjugated polymer films by ribbon-shaped FTM and its implication on anisotropic charge transport. Org. Electron., 2019, 65, 1-7. doi:10.1016/j.orgel.2018.10.043http://dx.doi.org/10.1016/j.orgel.2018.10.043
Chen S. W.; Zhu S. Y.; Lin Z. Q.; Peng J. Transforming polymorphs via meniscus-assisted solution-shearing conjugated polymers for organic field-effect transistors. ACS Nano, 2022, 16(7), 11194-11203. doi:10.1021/acsnano.2c04049http://dx.doi.org/10.1021/acsnano.2c04049
Ma J. S.; Hashimoto K.; Koganezawa T.; Tajima K. Enhanced vertical carrier mobility in poly(3-alkylthiophene) thin films sandwiched between self-assembled monolayers and surface-segregated layers. Chem. Commun., 2014, 50(27), 3627-3630. doi:10.1039/c3cc49760ghttp://dx.doi.org/10.1039/c3cc49760g
0
浏览量
221
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构