浏览全部资源
扫码关注微信
1.聚合物分子工程国家重点实验室 复旦大学高分子科学系 上海 200438
2.陶氏化学公司 上海 201203
E-mail: huangxiayun@fudan.edu.cn;
E-mail: chendy@fudan.edu.cn
纸质出版日期:2024-07-20,
网络出版日期:2024-04-10,
收稿日期:2023-12-30,
录用日期:2024-03-15
移动端阅览
朱杰, 吴乃冰, 赵晓雅, 范艳斌, 黄霞芸, 陈道勇. 具有抗蛋白黏附与抗菌性能的蝌蚪状单链粒子刷的构筑. 高分子学报, 2024, 55(7), 900-909
Zhu, J.; Wu, N. B.; Zhao, X. Y.; Fan, Y. B.; Huang, X. Y.; Chen, D. Y. Rational design of tadpole-like single-chain particle brush with anti-protein and antibacterial performance. Acta Polymerica Sinica, 2024, 55(7), 900-909
朱杰, 吴乃冰, 赵晓雅, 范艳斌, 黄霞芸, 陈道勇. 具有抗蛋白黏附与抗菌性能的蝌蚪状单链粒子刷的构筑. 高分子学报, 2024, 55(7), 900-909 DOI: 10.11777/j.issn1000-3304.2023.23303.
Zhu, J.; Wu, N. B.; Zhao, X. Y.; Fan, Y. B.; Huang, X. Y.; Chen, D. Y. Rational design of tadpole-like single-chain particle brush with anti-protein and antibacterial performance. Acta Polymerica Sinica, 2024, 55(7), 900-909 DOI: 10.11777/j.issn1000-3304.2023.23303.
基于蝌蚪状单链粒子与硅片表面的多位点协同非共价作用,发展了一种兼具操作便捷性和优异“生物防污”性能的PEG刷接枝策略. 通过原子转移自由基聚合(ATRP)制备了聚乙二醇-
b
-聚(4-乙烯基吡啶) (PEG-
b
-P4VP)嵌段共聚物,利用“静电介导”法对PEG-
b
-P4VP的P4VP嵌段进行链内交联,进一步加入过量的碘乙烷,制备得到P4VP“头部”完全季铵化的蝌蚪状单链粒子(TSCP-Q). 在简单的溶液浸泡接枝过程中,充分交联塌缩的“头部”与硅片表面通过多位点非共价协同作用,显著减少其在表面的吸附面积,而充分舒展的PEG“尾部”则通过体积排斥效应,确保了TSCP-Q刷在表面的接枝均匀性. 因此,所获得的TSCP-Q刷可在硅片表面实现了稳定且均匀地接枝,其中PEG“尾部”位于P4VP“头部”锚定层上方并有效遮蔽锚定层电荷. 实验表明,TSCP-Q刷具有优异的抗牛血清蛋白(BSA)黏附性能(4.8 ng/cm
2
),并且能够有效抑制金黄色葡萄球菌(
S. aureus
)的繁殖(抗菌率可达81%).
Based on the synergistic non-covalent interaction of tadpole-like single-chain particles with multiple sites on the wafer surface
a PEG brush grafting strategy has been developed that combines ease of handling and excellent "biofouling" properties. Specifically
the block copolymer poly(ethylene glycol)-
b
-poly(4-vinylpyridine) (PEG-
b
-P4VP) was synthesized by atom transfer radical polymerization (ATRP). The P4VP block was then intra-chain cross-linked using the "electrostatic-mediated" strategy
and the P4VP "head" was completely quaternized by further addition of excess ethyl iodide
yielding tadpole-like single-chain particles with completely quaternized "heads" (TSCP-Q). By simple solution immersion grafting method
the completely cross-linked and collapsed "head" significantly reduces its adsorption area on the silicon wafer through multi-site non-covalent synergistic interaction
while the extended PEG "tail" ensures grafting uniformity of TSCP-Q brushes on the surface through volume repulsion effect. As a result
the obtained TSCP-Q brushes achieve stable and uniform grafting on the silicon wafer
with PEG "tail" overlying the P4VP "head" anchoring layer and effectively masking the charge of the anchoring layer. The TSCP-Q brushes were shown to have excellent anti-bovine serum albumin (BSA) adsorption (4.8 ng/cm
2
) and could effectively inhibit the colonization of
Staphylococcus aureus
(
S. aureus
) (killing efficacy up to 81%).
蝌蚪状单链粒子聚合物刷聚乙二醇抗蛋白黏附抗菌
Tadpole-like single-chain particlePolymer brushPoly(ethylene glycol)Anti-protein adsorptionAntibacterial
Lee Y.; Chung Y. W.; Park J.; Park K.; Seo Y.; Hong S. N.; Lee S. H.; Jeon H.; Seo J. Lubricant-infused directly engraved nano-microstructures for mechanically durable endoscope lens with anti-biofouling and anti-fogging properties. Sci. Rep., 2020, 10(1), 17454. doi:10.1038/s41598-020-74517-8http://dx.doi.org/10.1038/s41598-020-74517-8
Tesler A. B.; Kim P.; Kolle S.; Howell C.; Ahanotu O.; Aizenberg J. Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel. Nat. Commun., 2015, 6, 8649. doi:10.1038/ncomms9649http://dx.doi.org/10.1038/ncomms9649
Liu S.; Guo W. W. Anti-biofouling and healable materials: preparation, mechanisms, and biomedical applications. Adv. Funct. Mater., 2018, 28(41), 1800596. doi:10.1002/adfm.201800596http://dx.doi.org/10.1002/adfm.201800596
He Z. K.; Lan X. R.; Hu Q. S.; Li H. M.; Li L. M.; Mao J. Y. Antifouling strategies based on super-phobic polymer materials. Prog. Org. Coat., 2021, 157, 106285. doi:10.1016/j.porgcoat.2021.106285http://dx.doi.org/10.1016/j.porgcoat.2021.106285
Baier R. E. Applied Chemistry at Protein Interfaces. Washington, D.C.: American Chemical Society, 1975, 319-335. doi:10.1021/ba-1975-0145.ch001http://dx.doi.org/10.1021/ba-1975-0145.ch001
Qian P. Y.; Cheng A. F.; Wang R. J.; Zhang R. Marine biofilms: diversity, interactions and biofouling. Nat. Rev. Microbiol., 2022, 20(11), 671-684. doi:10.1038/s41579-022-00744-7http://dx.doi.org/10.1038/s41579-022-00744-7
Deng Z. J.; Zhu R. T.; Ma L.; Zhou K. C.; Yu Z. M.; Wei Q. P. Diamond for antifouling applications: a review. Carbon, 2022, 196, 923-939. doi:10.1016/j.carbon.2022.05.015http://dx.doi.org/10.1016/j.carbon.2022.05.015
Maan A. M. C.; Hofman A. H.; de Vos W. M.; Kamperman M. Recent developments and practical feasibility of polymer‐based antifouling coatings. Adv. Funct. Mater., 2020, 30(32), 2000936. doi:10.1002/adfm.202000936http://dx.doi.org/10.1002/adfm.202000936
Nagasaki Y. Construction of a densely poly(ethylene glycol)-chain-tethered surface and its performance. Polym. J., 2011, 43(12), 949-958. doi:10.1038/pj.2011.93http://dx.doi.org/10.1038/pj.2011.93
Dai G. X.; Xie Q. Y.; Ai X. Q.; Ma C. F.; Zhang G. Z. Self-generating and self-renewing zwitterionic polymer surfaces for marine anti-biofouling. ACS Appl. Mater. Interfaces, 2019, 11(44), 41750-41757. doi:10.1021/acsami.9b16775http://dx.doi.org/10.1021/acsami.9b16775
Xu B. B.; Feng C.; Hu J. H.; Shi P.; Gu G. X.; Wang L.; Huang X. Y. Spin-casting polymer brush films for stimuli-responsive and anti-fouling surfaces. ACS Appl. Mater. Interfaces, 2016, 8(10), 6685-6692. doi:10.1021/acsami.5b12820http://dx.doi.org/10.1021/acsami.5b12820
Yokoyama H. New developments in polymer brush fabrication: concepts and physical properties of dynamic polymer brushes. Polym. J., 2023, 55, 735-742. doi:10.1038/s41428-023-00768-7http://dx.doi.org/10.1038/s41428-023-00768-7
Halperin A.; Fragneto G.; Schollier A.; Sferrazza M. Primary versus ternary adsorption of proteins onto PEG brushes. Langmuir, 2007, 23(21), 10603-10617. doi:10.1021/la701007jhttp://dx.doi.org/10.1021/la701007j
Xing C. M.; Meng F. N.; Quan M.; Ding K.; Dang Y.; Gong Y. K. Quantitative fabrication, performance optimization and comparison of PEG and zwitterionic polymer antifouling coatings. Acta Biomater., 2017, 59, 129-138. doi:10.1016/j.actbio.2017.06.034http://dx.doi.org/10.1016/j.actbio.2017.06.034
Weinhart M.; Becherer T.; Schnurbusch N.; Schwibbert K.; Kunte H. J.; Haag R. Linear and hyperbranched polyglycerol derivatives as excellent bioinert glass coating materials. Adv. Eng. Mater., 2011, 13(12), B501-B510. doi:10.1002/adem.201180012http://dx.doi.org/10.1002/adem.201180012
Pidhatika B.; Möller J.; Vogel V.; Konradi R. Nonfouling surface coatings based on poly(2-methyl-2-oxazoline). Chimia, 2008, 62(4), 264-269. doi:10.2533/chimia.2008.264http://dx.doi.org/10.2533/chimia.2008.264
Li L.; Yan B.; Zhang L.; Tian Y.; Zeng H. B. Mussel-inspired antifouling coatings bearing polymer loops. Chem. Commun., 2015, 51(87), 15780-15783. doi:10.1039/c5cc06852ehttp://dx.doi.org/10.1039/c5cc06852e
Sidorov S. N.; Bronstein L. M.; Kabachii Y. A.; Valetsky P. M.; Soo P. L.; Maysinger D.; Eisenberg A. Influence of metalation on the morphologies of poly(ethylene oxide)-block-poly(4-vinylpyridine) block copolymer micelles. Langmuir, 2004, 20(9), 3543-3550. doi:10.1021/la0360658http://dx.doi.org/10.1021/la0360658
Zhao W. F.; He C.; Wang H. Y.; Su B. H.; Sun S. D.; Zhao C. S. Improved antifouling property of polyethersulfone hollow fiber membranes using additive of poly(ethylene glycol) methyl ether-b-poly(styrene) copolymers. Ind. Eng. Chem. Res., 2011, 50(6), 3295-3303. doi:10.1021/ie102251vhttp://dx.doi.org/10.1021/ie102251v
Kennemur J. G. Poly(vinylpyridine) segments in block copolymers: synthesis, self-assembly, and versatility. Macromolecules, 2019, 52(4), 1354-1370. doi:10.1021/acs.macromol.8b01661http://dx.doi.org/10.1021/acs.macromol.8b01661
Zhang D. H.; Liu J. J.; Chen Q.; Jiang W. N.; Wang Y. B.; Xie J. Y.; Ma K. Q.; Shi C.; Zhang H. D.; Chen M. Z.; Wan J. L.; Ma P. C.; Zou J. C.; Zhang W. J.; Zhou F.; Liu R. H. A sandcastle worm-inspired strategy to functionalize wet hydrogels. Nat. Commun., 2021, 12(1), 6331. doi:10.1038/s41467-021-26659-0http://dx.doi.org/10.1038/s41467-021-26659-0
Xiang D.; Chen X.; Tang L.; Jiang B. Y.; Yang Z. Z. Electrostatic-mediated intramolecular cross-linking polymers in concentrated solutions. CCS Chem., 2019, 1(5), 407-430. doi:10.31635/ccschem.019.20190035http://dx.doi.org/10.31635/ccschem.019.20190035
Shao Y.; Wang Y. L.; Tang Z. A.; Wen Z. D.; Chang C.; Wang C. Y.; Sun D. Y.; Ye Y. L.; Qiu D.; Ke Y. B.; Liu F.; Yang Z. Z. Scalable synthesis of photoluminescent single-chain nanoparticles by electrostatic-mediated intramolecular crosslinking. Angew. Chem. Int. Ed., 2022, 61(27), e202205183. doi:10.1002/anie.202205183http://dx.doi.org/10.1002/anie.202205183
Xiang D.; Jiang B. Y.; Liang F. X.; Yan L. T.; Yang Z. Z. Single-chain Janus nanoparticle by metallic complexation. Macromolecules, 2020, 53(3), 1063-1069. doi:10.1021/acs.macromol.9b02388http://dx.doi.org/10.1021/acs.macromol.9b02388
Shao Y.; Ye Y. L.; Sun D. Y.; Yang Z. Z. Polymer-derived Janus particles at multiple length scales. Macromolecules, 2022, 55(15), 6297-6310. doi:10.1016/j.progpolymsci.2022.101593http://dx.doi.org/10.1016/j.progpolymsci.2022.101593
Shao Y.; Yang Z. Z. Progress in polymer single-chain based hybrid nanoparticles. Prog. Polym. Sci., 2022, 133, 101593. doi:10.1016/j.progpolymsci.2022.101593http://dx.doi.org/10.1016/j.progpolymsci.2022.101593
叶一兰, 孙大吟, 杨振忠. 高分子单链-胶体杂化纳米颗粒的合成进展与挑战. 高分子学报, 2022, 53(12), 1429-1444. doi:10.11777/j.issn1000-3304.2022.22177http://dx.doi.org/10.11777/j.issn1000-3304.2022.22177
Ketrat S.; Japrung D.; Pongprayoon P. Exploring how structural and dynamic properties of bovine and canine serum albumins differ from human serum albumin. J. Mol. Graph. Model., 2020, 98, 107601. doi:10.1016/j.jmgm.2020.107601http://dx.doi.org/10.1016/j.jmgm.2020.107601
Mehta A. P.; Supekova L.; Chen J. H.; Pestonjamasp K.; Webster P.; Ko Y.; Henderson S. C.; McDermott G.; Supek F.; Schultz P. G. Engineering yeast endosymbionts as a step toward the evolution of mitochondria. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(46), 11796-11801. doi:10.1073/pnas.1813143115http://dx.doi.org/10.1073/pnas.1813143115
Brown D. M.; Chan Y. A.; Desai P. J.; Grzesik P.; Oldfield L. M.; Vashee S.; Way J. C.; Silver P. A.; Glass J. I. Efficient size-independent chromosome delivery from yeast to cultured cell lines. Nucleic Acids Res., 2017, 45(7), e50.
Nadagouda M. N.; Vijayasarathy P.; Sin A.; Nam H.; Khan S.; Parambath J. B. M.; Mohamed A. A.; Han C. Antimicrobial activity of quaternary ammonium salts: structure-activity relationship. Med. Chem. Res., 2022, 31(10), 1663-1678. doi:10.1007/s00044-022-02924-9http://dx.doi.org/10.1007/s00044-022-02924-9
Kalelkar P. P.; Riddick M.; García A. J. Biomaterial-based antimicrobial therapies for the treatment of bacterial infections. Nat. Rev. Mater., 2022, 7, 39-54. doi:10.1038/s41578-021-00362-4http://dx.doi.org/10.1038/s41578-021-00362-4
0
浏览量
261
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构