浏览全部资源
扫码关注微信
浙江大学化学工程与生物工程学院 化学工程联合国家重点实验室 杭州 310058
E-mail: zhengning@zju.edu.cn
纸质出版日期:2024-05-20,
网络出版日期:2024-03-18,
收稿日期:2023-12-31,
录用日期:2024-01-31
移动端阅览
周筱睿, 杨博, 郑宁. 驱动温度可调的依序自滚动液晶弹性体. 高分子学报, 2024, 55(5), 614-623
Zhou, X., R; Yang, B; Zheng, N. Sequentially autonomous rolling of liquid crystalline elastomers with tunable actuation temperatures. Acta Polymerica Sinica, 2024, 55(5), 614-623
周筱睿, 杨博, 郑宁. 驱动温度可调的依序自滚动液晶弹性体. 高分子学报, 2024, 55(5), 614-623 DOI: 10.11777/j.issn1000-3304.2023.23306.
Zhou, X., R; Yang, B; Zheng, N. Sequentially autonomous rolling of liquid crystalline elastomers with tunable actuation temperatures. Acta Polymerica Sinica, 2024, 55(5), 614-623 DOI: 10.11777/j.issn1000-3304.2023.23306.
传统的自驱动液晶弹性体,受限于单一的材料化学设计,仅能在特定条件(或温度范围)下实现自主运动. 为了解决这一限制,本研究基于扭曲带状的自驱动液晶弹性体,通过调节网络的交联密度和引入非液晶共聚单体的方法,成功实现了对自驱动液晶弹性体工作温度的精确设计. 在进一步优化材料的驱动性能和力学性能后,获得了工作温度范围不同的自驱动液晶弹性体,分别实现了不同软体驱动器在升温和降温过程中的按需依次滚动. 这种可调工作温度的自驱动液晶弹性体将显著拓展软机器人材料的设计应用领域.
The autonomous liquid crystalline elastomer (LCE) actuators have garnered increasing attention owing to their ability to sustain continuous motion without the need for external manual control. However
most autonomous LCEs are only capable of achieving self-sustained locomotion under specific single conditions (or within a small temperature range) due to their simplistic chemical design. This study begins with a twisted ribbon-shaped autonomous LCE
wherein precise control over the working temperature is attained by manipulating the network cross-linking density and incorporating non-liquid crystal co-monomers. The result shows that the cross-linking density has a significant impact on both the actuation performance and mechanical properties of LCEs
thereby influencing working temperature range and actuation speed. Specifically
as the amount of crosslinkers decreases
the actuation strain increases from 60% to 90% while the Young's modulus decreases from 21 MPa to 6 MPa. Due to the compromise of these two properties
the self-rolling capability would be constrained by either excessively high or low levels of cross-linking densities. The optimal performance is observed when the cross-linker ratio is in a moderate state
resulting in a wider range of actuation temperatures and faster moving speed. Beyond that
the incorporation of non-liquid crystal co-monomers also plays an important role in the actuation of LCEs. Different from the cross-linking density
both actuation performance and mechanical properties decrease significantly as the content of co-monomers increases
leading to a notable reduction in the temperature range required for actuation. The phase transition temperature of LCE even disappears when the co-monomer content exceeds 25 wt%
resulting in a loss of autonomous motion. Overall
the aforementioned methods enable the easy achievement of autonomous LCE actuators with diverse working temperature ranges. Sequential autonomous rolling can be accomplished during both the heating and cooling processes
owing to the distinct actuation temperatures exhibited by different LCE actuators. This tunable working temperature of autonomous LCE actuators will significantly broaden the scope of material design for soft robots.
液晶弹性体软体驱动器自主运动
Liquid crystalline elastomerSoft actuatorAutonomous locomotion
Xiao Y. Y.; Jiang Z. C.; Tong X.; Zhao Y. Biomimetic locomotion of electrically powered "Janus" soft robots using a liquid crystal polymer. Adv. Mater., 2019, 31(36), 1903452. doi:10.1002/adma.201970259http://dx.doi.org/10.1002/adma.201970259
Rogóż M.; Zeng H.; Xuan C.; Wiersma D. S.; Wasylczyk P. Light-driven soft robot mimics caterpillar locomotion in natural scale. Adv. Opt. Mater., 2016, 4(11), 1689-1694. doi:10.1002/adom.201600503http://dx.doi.org/10.1002/adom.201600503
Zuo B.; Wang M.; Lin B. P.; Yang H. Visible and infrared three-wavelength modulated multi-directional actuators. Nat. Commun., 2019, 10(1), 4539. doi:10.1038/s41467-019-12583-xhttp://dx.doi.org/10.1038/s41467-019-12583-x
Pilz da Cunha M.; Ambergen S.; Debije M. G.; Homburg E. F. G. A.; den Toonder J. M. J.; Schenning A. P. H. J. A soft transporter robot fueled by light. Adv. Sci., 2020, 7(5), 1902842. doi:10.1002/advs.201902842http://dx.doi.org/10.1002/advs.201902842
Ma S. D.; Li X.; Huang S.; Hu J.; Yu H. F. A light-activated polymer composite enables on-demand photocontrolled motion: transportation at the liquid/air interface. Angew. Chem. Int. Ed, 2019, 58(9), 2655-2659. doi:10.1002/anie.201811808http://dx.doi.org/10.1002/anie.201811808
Shahsavan H.; Aghakhani A.; Zeng H.; Guo Y. B.; Davidson Z. S.; Priimagi A.; Sitti M. Bioinspired underwater locomotion of light-driven liquid crystal gels. Proc. Natl. Acad. Sci. U. S. A., 2020, 117(10), 5125-5133. doi:10.11777/j.issn1000-3304.2017.17196http://dx.doi.org/10.11777/j.issn1000-3304.2017.17196
卿鑫, 吕久安, 俞燕蕾. 光致形变液晶高分子. 高分子学报, 2017, (11), 1679-1705. doi:10.11777/j.issn1000-3304.2017.17196http://dx.doi.org/10.11777/j.issn1000-3304.2017.17196
陆海峰, 王猛, 黄帅, 陈旭漫, 刘志洋, 杨洪. 环氧液晶弹性体材料的制备与力学性能研究. 高分子学报, 2021, 52(3), 304-311. doi:10.11777/j.issn1000-3304.2020.20197http://dx.doi.org/10.11777/j.issn1000-3304.2020.20197
Wang Z. J.; Wang Z. J.; Zheng Y.; He Q. G.; Wang Y.; Cai S. Q. Three-dimensional printing of functionally graded liquid crystal elastomer. Sci. Adv., 2020, 6(39), eabc0034. doi:10.1126/sciadv.abc0034http://dx.doi.org/10.1126/sciadv.abc0034
Herbert K. M.; Fowler H. E.; McCracken J. M.; Schlafmann K. R.; Koch J. A.; White T. J. Synthesis and alignment of liquid crystalline elastomers. Nat. Rev. Mater., 2022, 7, 23-38. doi:10.1038/s41578-021-00359-zhttp://dx.doi.org/10.1038/s41578-021-00359-z
Yao M. Y.; Wu B. H.; Feng X. D.; Sun S. T.; Wu P. Y. A highly robust ionotronic fiber with unprecedented mechanomodulation of ionic conduction. Adv. Mater., 2021, 33(42), e2103755. doi:10.1002/adma.202103755http://dx.doi.org/10.1002/adma.202103755
Ma J. Z.; Yang Y. Z.; Valenzuela C.; Zhang X.; Wang L.; Feng W. Mechanochromic, shape-programmable and self-healable cholesteric liquid crystal elastomers enabled by dynamic covalent boronic ester bonds. Angew. Chem. Int. Ed, 2022, 61(9), e202116219. doi:10.1002/anie.202116219http://dx.doi.org/10.1002/anie.202116219
Ohm C.; Brehmer M.; Zentel R. Liquid crystalline elastomers as actuators and sensors. Adv. Mater., 2010, 22(31), 3366-3387. doi:10.1002/adma.200904059http://dx.doi.org/10.1002/adma.200904059
He Q. G.; Wang Z. J.; Wang Y.; Minori A.; Tolley M. T.; Cai S. Q. Electrically controlled liquid crystal elastomer-based soft tubular actuator with multimodal actuation. Sci. Adv., 2019, 5(10), eaax5746. doi:10.1126/sciadv.aax5746http://dx.doi.org/10.1126/sciadv.aax5746
Wu S.; Hong Y. Y.; Zhao Y.; Yin J.; Zhu Y. Caterpillar-inspired soft crawling robot with distributed programmable thermal actuation. Sci. Adv., 2023, 9(12), eadf8014. doi:10.1126/sciadv.adf8014http://dx.doi.org/10.1126/sciadv.adf8014
Liang H.; Liu Y. W.; Xu H. T.; Yang Y.; He E. J.; Yang Z. J.; Wei Y.; Ji Y. Thiol-acrylate catalyst enabled post-synthesis fabrication of liquid crystal actuators. Chinese J. Polym. Sci., 2023, 41(10), 1656-1662. doi:10.1007/s10118-023-3031-2http://dx.doi.org/10.1007/s10118-023-3031-2
Qian N. N.; Bisoyi H. K.; Wang M.; Huang S.; Liu Z. C.; Chen X. M.; Hu J.; Yang H.; Li Q. A visible and near-infrared light-fueled omnidirectional twist-bend crawling robot. Adv. Funct. Mater., 2023, 33(16), 2214205. doi:10.1002/adfm.202214205http://dx.doi.org/10.1002/adfm.202214205
Zhang J. C.; Guo Y. B.; Hu W. Q.; Soon R. H.; Davidson Z. S.; Sitti M. Liquid crystal elastomer-based magnetic composite films for reconfigurable shape-morphing soft miniature machines. Adv. Mater., 2021, 33(8), e2006191. doi:10.1002/adma.202170054http://dx.doi.org/10.1002/adma.202170054
Ahn C.; Li K.; Cai S. Q. Light or thermally powered autonomous rolling of an elastomer rod. ACS Appl. Mater. Interfaces, 2018, 10(30), 25689-25696. doi:10.1021/acsami.8b07563http://dx.doi.org/10.1021/acsami.8b07563
Zhai F.; Feng Y. Y.; Li Z. Y.; Xie Y. X.; Ge J.; Wang H.; Qiu W.; Feng W. 4D-printed untethered self-propelling soft robot with tactile perception: rolling, racing, and exploring. Matter, 2021, 4(10), 3313-3326. doi:10.1016/j.matt.2021.08.014http://dx.doi.org/10.1016/j.matt.2021.08.014
Zhao Y.; Chi Y. D.; Hong Y. Y.; Li Y. B.; Yang S.; Yin J. Twisting for soft intelligent autonomous robot in unstructured environments. Proc. Natl. Acad. Sci. U. S. A., 2022, 119(22), e2200265119. doi:10.1073/pnas.2200265119http://dx.doi.org/10.1073/pnas.2200265119
Kim D. S.; Lee Y. J.; Kim Y. B.; Wang Y. C.; Yang S. Autonomous, untethered gait-like synchronization of lobed loops made from liquid crystal elastomer fibers via spontaneous snap-through. Sci. Adv., 2023, 9(20), eadh5107. doi:10.1126/sciadv.adh5107http://dx.doi.org/10.1126/sciadv.adh5107
Jiang Z. C.; Xiao Y. Y.; Cheng R. D.; Hou J. B.; Zhao Y. Dynamic liquid crystalline networks for twisted fiber and spring actuators capable of fast light-driven movement with enhanced environment adaptability. Chem. Mater., 2021, 33(16), 6541-6552. doi:10.1021/acs.chemmater.1c02073http://dx.doi.org/10.1021/acs.chemmater.1c02073
Roach D. J.; Kuang X.; Yuan C.; Chen K. J.; Qi H. J. Novel ink for ambient condition printing of liquid crystal elastomers for 4D printing. Smart Mater. Struct., 2018, 27(12), 125011. doi:10.1088/1361-665x/aae96fhttp://dx.doi.org/10.1088/1361-665x/aae96f
Kotikian A.; McMahan C.; Davidson E. C.; Muhammad J. M.; Weeks R. D.; Daraio C.; Lewis J. A. Untethered soft robotic matter with passive control of shape morphing and propulsion. Sci. Robot., 2019, 4(33), eaax7044. doi:10.1126/scirobotics.aax7044http://dx.doi.org/10.1126/scirobotics.aax7044
Guo Y. H.; Lee J.; Son J.; Ahn S. K.; Carrillo J. M Y.; Sumpter, B. G. Decoding liquid crystal oligomer phase transitions: toward molecularly engineered shape changing materials. Macromolecules, 2019, 52(18), 6878-6888. doi:10.1021/acs.macromol.9b01218http://dx.doi.org/10.1021/acs.macromol.9b01218
Yao Y. J.; He E. J.; Xu H. T.; Liu Y. W.; Yang Z. J.; Wei Y.; Ji Y. Enabling liquid crystal elastomers with tunable actuation temperature. Nat. Commun., 2023, 14, 3518. doi:10.1038/s41467-023-39238-2http://dx.doi.org/10.1038/s41467-023-39238-2
Chen G. C.; Jin B. J.; Shi Y. P.; Zhao Q.; Shen Y. Q.; Xie T. Rapidly and repeatedly reprogrammable liquid crystalline elastomer via a shape memory mechanism. Adv. Mater., 2022, 34(21), e2201679. doi:10.1002/adma.202201679http://dx.doi.org/10.1002/adma.202201679
Niu H. Y.; Wang Y. C.; Wang J.; Yang W. L.; Dong Y. M.; Bi M.; Zhang J. D.; Xu J. J.; Bi S. Y.; Wang B. S.; Gao Y. C.; Li C. S.; Zhang J. Q. Reducing the actuation threshold by incorporating a nonliquid crystal chain into a liquid crystal elastomer. RSC Adv., 2018, 8(9), 4857-4866. doi:10.1039/c7ra11165ghttp://dx.doi.org/10.1039/c7ra11165g
杨洋, 张锡奇, 危岩, 吉岩. 可多次使用的液晶型类玻璃高分子. 高分子学报, 2017, (10), 1662-1667. doi:10.11777/j.issn1000-3304.2017.17134http://dx.doi.org/10.11777/j.issn1000-3304.2017.17134
Shaha R. K.; Torbati A. H.; Frick C. P. Body-temperature shape-shifting liquid crystal elastomers. J. Appl. Polym. Sci., 2020,137, 50136. doi:10.1002/app.50136http://dx.doi.org/10.1002/app.50136
Chen G. C.; Feng H. J.; Zhou X. R.; Gao F.; Zhou K.; Huang Y. J.; Jin B. J.; Xie T.; Zhao Q. Programming actuation onset of a liquid crystalline elastomer via isomerization of network topology. Nat. Commun., 2023, 14(1), 6822. doi:10.1038/s41467-023-42594-8http://dx.doi.org/10.1038/s41467-023-42594-8
Bauman G. E.; McCracken J. M.; White T. J. Actuation of liquid crystalline elastomers at or below ambient temperature. Angew. Chem. Int. Ed., 2022, 61(28), e202202577. doi:10.1002/anie.202202577http://dx.doi.org/10.1002/anie.202202577
0
浏览量
326
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构