浏览全部资源
扫码关注微信
1.中国科学院上海应用物理研究所 中国科学院界面物理与技术重点实验室 上海 201800
2.中国科学院大学 北京 100049
3.张江实验室 上海 201210
4.上海交通大学化学化工学院 上海 200240
[ "叶德楷,男,1989年生. 2011年于南京大学生命科学学院获得学士学位;2019年于中国科学院上海应用物理研究所获得博士学位;2019~2022年,中国科学院化学研究所从事博士后研究. 2022年加入张江实验室,现任副研究员. 2022年获上海市启明星资助. 主要研究方向为框架核酸自组装器件构筑及功能应用." ]
纸质出版日期:2024-06-20,
网络出版日期:2024-03-28,
收稿日期:2023-12-31,
录用日期:2024-02-02
移动端阅览
李颀, 王丽华, 樊春海, 叶德楷. DNA水凝胶的构建及柔性电子应用. 高分子学报, 2024, 55(6), 655-672
Li, Q.; Wang, L. H.; Fan, C. M.; Ye, D. K. Construction of DNA hydrogels and flexible electronic applications. Acta Polymerica Sinica, 2024, 55(6), 655-672
李颀, 王丽华, 樊春海, 叶德楷. DNA水凝胶的构建及柔性电子应用. 高分子学报, 2024, 55(6), 655-672 DOI: 10.11777/j.issn1000-3304.2023.23308.
Li, Q.; Wang, L. H.; Fan, C. M.; Ye, D. K. Construction of DNA hydrogels and flexible electronic applications. Acta Polymerica Sinica, 2024, 55(6), 655-672 DOI: 10.11777/j.issn1000-3304.2023.23308.
水凝胶材料能有效提升柔性电子器件与人体组织的相容性,在智能穿戴、健康监测和人机接口等研究领域展现了巨大的应用潜力. 然而,传统的水凝胶材料难以在器件界面进行原位无损的结构调控,同时也缺乏对多类型生化刺激的识别响应能力,这制约了水凝胶柔性电子器件的高性能构筑和多功能应用. DNA水凝胶制备工艺温和,结构精确可控且具有丰富的生化识别响应性,是柔性电子器件功能化的理想材料之一. 本文着重介绍了DNA水凝胶的材料特性及其柔性电子器件应用的研究进展. 首先介绍了纯DNA水凝胶和杂化DNA水凝胶的制备方法,以及面向多类型功能界面的构筑策略. 通过对DNA水凝胶力学特性、识别响应性和生物相容性的深入分析,展示了其在器件功能调控和生物医学应用方面的重要价值. 其次,详细探讨了DNA水凝胶功能化的柔性电子器件在传感、储能和显示等方面的研究进展,展现了其在人体健康监测和智能穿戴领域的应用前景. 最后,对DNA水凝胶在柔性生物电子领域的未来发展进行了展望.
Hydrogels serve as effective functional interface materials that enhance compatibility between human tissues and flexible electronic devices. These hydrogel-based devices exhibit great potential in research areas like smart wearables
health monitoring
and human-machine interfaces. However
traditional hydrogel materials pose challenges in achieving controllable fabrication at the device interface and designing responses to biological and chemical stimuli. These limitations restrain the creation of high-performance hydrogel-based flexible electronic devices for intelligent applications. This article primarily aims to introduce the distinctive material properties of novel DNA hydrogels and their advancements in flexible electronic devices. Initially
we introduced the fabrication techniques for both pure and hybrid DNA hydrogels
alongside strategies for regulating functional interfaces. Subsequently
an in-depth analysis of DNA hydrogels' mechanical properties
stimulus responsiveness
and biocompatibility is provided. Specifically
we explored how these crucial attributes can be harnessed in designing functional devices and biomedical applications. Moreover
we outlined the progress of DNA hydrogel-based flexible electronic devices in sensing
energy storage
and displaying. These advancements showcase their significant potential in human health monitoring and smart wearables. Finally
we discussed the prospective development directions of DNA hydrogels in the domain of flexible bioelectronics.
DNA水凝胶刺激响应柔性电子器件传感器
DNA hydrogelStimulus-responseFlexible devicesSensor
Hu Y. J.; Wu M. M.; Chi F. Y.; Lai G. B.; Li P. Y.; He W. Y.; Lu B.; Weng C. X.; Lin J. G.; Chen F. G.; Cheng H. H.; Liu F.; Jiang L.; Qu L. T. Ultralow-resistance electrochemical capacitor for integrable line filtering. Nature, 2023, 624(7990), 74-79. doi:10.1038/s41586-023-06712-2http://dx.doi.org/10.1038/s41586-023-06712-2
Gao F. P.; Liu C. X.; Zhang L. C.; Liu T. Z.; Wang Z.; Song Z. X.; Cai H. Y.; Fang Z.; Chen J. M.; Wang J. B.; Han M. D.; Wang J.; Lin K.; Wang R. Y.; Li M. X.; Mei Q.; Ma X. B.; Liang S. L.; Gou G. Y.; Xue N. Wearable and flexible electrochemical sensors for sweat analysis: a review. Microsyst. Nanoeng., 2023, 9, 1. doi:10.1038/s41378-022-00443-6http://dx.doi.org/10.1038/s41378-022-00443-6
Cea C.; Zhao Z. F.; Wisniewski D. J.; Spyropoulos G. D.; Polyravas A.; Gelinas J. N.; Khodagholy D. Integrated internal ion-gated organic electrochemical transistors for stand-alone conformable bioelectronics. Nat. Mater., 2023, 22(10), 1227-1235. doi:10.1038/s41563-023-01599-whttp://dx.doi.org/10.1038/s41563-023-01599-w
Zang Y. P.; Huang D. Z.; Di C. A.; Zhu D. B. Device engineered organic transistors for flexible sensing applications. Adv. Mater., 2016, 28(22), 4549-4555. doi:10.1002/adma.201505034http://dx.doi.org/10.1002/adma.201505034
Zhang Z. T.; Wang W. C.; Jiang Y. W.; Wang Y. X.; Wu Y. L.; Lai J. C.; Niu S. M.; Xu C. Y.; Shih C. C.; Wang C.; Yan H. P.; Galuska L.; Prine N.; Wu H. C.; Zhong D. L.; Chen G.; Matsuhisa N.; Zheng Y.; Yu Z. A.; Wang Y.; Dauskardt R.; Gu X. D.; Tok J. B. H.; Bao Z. N. High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature, 2022, 603(7902), 624-630. doi:10.1038/s41586-022-04400-1http://dx.doi.org/10.1038/s41586-022-04400-1
Min J. H.; Demchyshyn S.; Sempionatto J. R.; Song Y.; Hailegnaw B.; Xu C. H.; Yang Y. R.; Solomon S.; Putz C.; Lehner L. E.; Schwarz J. F.; Schwarzinger C.; Scharber M. C.; Shirzaei Sani E.; Kaltenbrunner M.; Gao W. An autonomous wearable biosensor powered by a perovskite solar cell. Nat. Electron., 2023, 6, 630-641. doi:10.1038/s41928-023-00996-yhttp://dx.doi.org/10.1038/s41928-023-00996-y
Liu W. Z.; Liu Y. J.; Yang Z. Q.; Xu C. Q.; Li X. D.; Huang S. L.; Shi J. H.; Du J. L.; Han A. J.; Yang Y. H.; Xu G. N.; Yu J.; Ling J. J.; Peng J.; Yu L. P.; Ding B.; Gao Y.; Jiang K.; Li Z. F.; Yang Y. C.; Li Z. J.; Lan S. H.; Fu H. X.; Fan B.; Fu Y. Y.; He W.; Li F. R.; Song X.; Zhou Y. N.; Shi Q.; Wang G. Y.; Guo L.; Kang J. X.; Yang X. B.; Li D. D.; Wang Z. C.; Li J.; Thoroddsen S.; Cai R.; Wei F. H.; Xing G. Q.; Xie Y.; Liu X. C.; Zhang L. P.; Meng F. Y.; Di Z. F.; Liu Z. X. Flexible solar cells based on foldable silicon wafers with blunted edges. Nature, 2023, 617(7962), 717-723. doi:10.1038/s41586-023-05921-zhttp://dx.doi.org/10.1038/s41586-023-05921-z
Gkoupidenis P.; Zhang Y.; Kleemann H.; Ling H.; Santoro F.; Fabiano S.; Salleo A.; van de Burgt Y. Organic mixed conductors for bioinspired electronics. Nat. Rev. Mater., 2024, 9, 134-149. doi:10.1038/s41578-023-00622-5http://dx.doi.org/10.1038/s41578-023-00622-5
Yi J. Q.; Zou G. J.; Huang J. P.; Ren X. Y.; Tian Q.; Yu Q.; Wang P.; Yuan Y. H.; Tang W. J.; Wang C. X.; Liang L. L.; Cao Z. S.; Li Y. H.; Yu M.; Jiang Y.; Zhang F. L.; Yang X.; Li W. L.; Wang X. S.; Luo Y. F.; Loh X. J.; Li G. L.; Hu B. H.; Liu Z. Y.; Gao H. J.; Chen X. D. Water-responsive supercontractile polymer films for bioelectronic interfaces. Nature, 2023, 624(7991), 295-302. doi:10.1038/s41586-023-06732-yhttp://dx.doi.org/10.1038/s41586-023-06732-y
Hoang A. T.; Hu L.; Kim B. J.; Van T. T. N.; Park K. D.; Jeong Y.; Lee K.; Ji S.; Hong J.; Katiyar A. K.; Shong B.; Kim K.; Im S.; Chung W. J.; Ahn J. H. Low-temperature growth of MoS2 on polymer and thin glass substrates for flexible electronics. Nat. Nanotechnol., 2023, 18(12), 1439-1447. doi:10.1038/s41565-023-01460-whttp://dx.doi.org/10.1038/s41565-023-01460-w
Zheng Y. Q.; Liu Y. X.; Zhong D. L.; Nikzad S.; Liu S. H.; Yu Z. A.; Liu D. Y.; Wu H. C.; Zhu C. X.; Li J. X.; Tran H.; Tok J. B. H.; Bao Z. N. Monolithic optical microlithography of high-density elastic circuits. Science, 2021, 373(6550), 88-94. doi:10.1126/science.abh3551http://dx.doi.org/10.1126/science.abh3551
Cooper C. B.; Root S. E.; Michalek L.; Wu S.; Lai J. C.; Khatib M.; Oyakhire S. T.; Zhao R.; Qin J.; Bao Z. N. Autonomous alignment and healing in multilayer soft electronics using immiscible dynamic polymers. Science, 2023, 380(6648), 935-941. doi:10.1126/science.adh0619http://dx.doi.org/10.1126/science.adh0619
Chen R. Z.; Wang X. J.; Li X.; Wang H. X.; He M. Q.; Yang L. F.; Guo Q. Y.; Zhang S.; Zhao Y.; Li Y.; Liu Y. Q.; Wei D. C. A comprehensive nano-interpenetrating semiconducting photoresist toward all-photolithography organic electronics. Sci. Adv., 2021, 7(25), eabg0659. doi:10.1126/sciadv.abg0659http://dx.doi.org/10.1126/sciadv.abg0659
Hu H. J.; Huang H.; Li M. H.; Gao X. X.; Yin L.; Qi R. X.; Wu R. S.; Chen X. J.; Ma Y. X.; Shi K. R.; Li C. H.; Maus T. M.; Huang B.; Lu C.; Lin M. Y.; Zhou S.; Lou Z. Y.; Gu Y.; Chen Y. M.; Lei Y. S.; Wang X. Y.; Wang R. T.; Yue W. T.; Yang X. Y.; Bian Y. Z.; Mu J.; Park G.; Xiang S.; Cai S. Q.; Corey P. W.; Wang J.; Xu S. A wearable cardiac ultrasound imager. Nature, 2023, 613(7945), 667-675. doi:10.1038/s41586-022-05498-zhttp://dx.doi.org/10.1038/s41586-022-05498-z
Mei X. Y.; Ye D. K.; Zhang F. J.; Di C. A. Implantable application of polymer-based biosensors. J. Polym. Sci., 2022, 60(3), 328-347. doi:10.1002/pol.20210543http://dx.doi.org/10.1002/pol.20210543
Harikesh P. C.; Yang C. Y.; Wu H. Y.; Zhang S. L.; Donahue M. J.; Caravaca A. S.; Huang J. D.; Olofsson P. S.; Berggren M.; Tu D. Y.; Fabiano S. Ion-tunable antiambipolarity in mixed ion-electron conducting polymers enables biorealistic organic electrochemical neurons. Nat. Mater., 2023, 22(2), 242-248. doi:10.1038/s41563-022-01450-8http://dx.doi.org/10.1038/s41563-022-01450-8
Wang Z. Y.; Bo Y. W.; Bai P. J.; Zhang S. C.; Li G. H.; Wan X. J.; Liu Y. S.; Ma R. J.; Chen Y. S. Self-sustaining personal all-day thermoregulatory clothing using only sunlight. Science, 2023, 382(6676), 1291-1296. doi:10.1126/science.adj3654http://dx.doi.org/10.1126/science.adj3654
Zhang Y. C.; Ye D. K.; Li M. X.; Zhang X.; Di C. A.; Wang C. Solid state ionics enabled ultra-sensitive detection of thermal trace with 0.001 K resolution in deep sea. Nat. Commun., 2023, 14(1), 170. doi:10.1038/s41467-022-35682-8http://dx.doi.org/10.1038/s41467-022-35682-8
He Z. H.; Shen H. G.; Ye D. K.; Xiang L. Y.; Zhao W. R.; Ding J. M.; Zhang F. J.; Di C. A.; Zhu D. B. An organic transistor with light intensity-dependent active photoadaptation. Nat. Electron., 2021, 4, 522-529. doi:10.1038/s41928-021-00615-8http://dx.doi.org/10.1038/s41928-021-00615-8
Zhang F. J.; Zang Y. P.; Huang D. Z.; Di C. A.; Zhu D. B. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat. Commun., 2015, 6, 8356. doi:10.1038/ncomms9356http://dx.doi.org/10.1038/ncomms9356
Zang Y. P.; Zhang F. J.; Huang D. Z.; Gao X. K.; Di C. A.; Zhu D. B. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. Nat. Commun., 2015, 6, 6269. doi:10.1038/ncomms7269http://dx.doi.org/10.1038/ncomms7269
Tang X.; Shen H.; Zhao S. Y.; Li N.; Liu J. Flexible brain-computer interfaces. Nat. Electron., 2023, 6, 109-118. doi:10.1038/s41928-022-00913-9http://dx.doi.org/10.1038/s41928-022-00913-9
Le Floch P.; Zhao S. Y.; Liu R.; Molinari N.; Medina E.; Shen H.; Wang Z. L.; Kim J.; Sheng H.; Partarrieu S.; Wang W. B.; Sessler C.; Zhang G. G.; Park H.; Gong X.; Spencer A.; Lee J.; Ye T. Y.; Tang X.; Wang X.; Bertoldi K.; Lu N. S.; Kozinsky B.; Suo Z. G.; Liu J. 3D spatiotemporally scalable in vivo neural probes based on fluorinated elastomers. Nat. Nanotechnol., 2023, Doi: 10.1038/s41565-023-01545-6.http://dx.doi.org/10.1038/s41565-023-01545-6.
Cho H.; Lee I.; Jang J.; Kim J. H.; Lee H.; Park S.; Wang G. Real-time finger motion recognition using skin-conformable electronics. Nat. Electron., 2023, 6, 619-629. doi:10.1038/s41928-023-01012-zhttp://dx.doi.org/10.1038/s41928-023-01012-z
Lu Y. Y.; Yang G.; Wang S. Q.; Zhang Y. Q.; Jian Y. H.; He L.; Yu T.; Luo H. Y.; Kong D. P.; Xianyu Y. L.; Liang B.; Liu T.; Ouyang X. P.; Yu J. C.; Hu X. Y.; Yang H. Y.; Gu Z.; Huang W.; Xu K. C. Stretchable graphene-hydrogel interfaces for wearable and implantable bioelectronics. Nat. Electron., 2024, 7, 51-65. doi:10.1038/s41928-023-01091-yhttp://dx.doi.org/10.1038/s41928-023-01091-y
Zhou T.; Yuk H.; Hu F. Q.; Wu J. J.; Tian F. J.; Roh H.; Shen Z. Q.; Gu G. Y.; Xu J. K.; Lu B. Y.; Zhao X. H. 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces. Nat. Mater., 2023, 22(7), 895-902. doi:10.1038/s41563-023-01569-2http://dx.doi.org/10.1038/s41563-023-01569-2
Yuk H.; Wu J. J.; Zhao X. H. Hydrogel interfaces for merging humans and machines. Nat. Rev. Mater., 2022, 7, 935-952. doi:10.1038/s41578-022-00483-4http://dx.doi.org/10.1038/s41578-022-00483-4
Lim C.; Hong Y. J.; Jung J.; Shin Y.; Sunwoo S. H.; Baik S.; Park O. K.; Choi S. H.; Hyeon T.; Kim J. H.; Lee S.; Kim D. H. Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. Sci. Adv., 2021, 7(19), eabd3716. doi:10.1126/sciadv.abd3716http://dx.doi.org/10.1126/sciadv.abd3716
章炜, 夏欢, 陈鹏宇, 曹昕, 张涵凝, 谢谦, 易承杰, 徐刚. 电子导电水凝胶电极在柔性储能系统中的应用研究进展. 高分子学报, 2023, 55(3), 255-274. doi:10.11777/j.issn1000-3304.2023.23237http://dx.doi.org/10.11777/j.issn1000-3304.2023.23237
Yang C. H.; Suo, Z. G. Hydrogel ionotronics. Nat. Rev. Mater., 2018, 3, 125-142. doi:10.1038/s41578-018-0018-7http://dx.doi.org/10.1038/s41578-018-0018-7
Yuk H.; Lu B. Y.; Zhao X. H. Hydrogel bioelectronics. Chem. Soc. Rev., 2019, 48(6), 1642-1667. doi:10.1039/c8cs00595hhttp://dx.doi.org/10.1039/c8cs00595h
Guan Q. F.; Yang H. B.; Han Z. M.; Ling Z. C.; Yin C. H.; Yang K. P.; Zhao Y. X.; Yu S. H. Sustainable cellulose-nanofiber-based hydrogels. ACS Nano, 2021, 15(5), 7889-7898. doi:10.1021/acsnano.1c01247http://dx.doi.org/10.1021/acsnano.1c01247
Sun A.; He X. Y.; Ji X.; Hu D. R.; Pan M.; Zhang L. H.; Qian Z. Y. Current research progress of photopolymerized hydrogels in tissue engineering. Chin. Chem. Lett., 2021, 32(7), 2117-2126. doi:10.1016/j.cclet.2021.01.048http://dx.doi.org/10.1016/j.cclet.2021.01.048
Wang Y. T.; Zhang S.; Wang J. Photo-crosslinkable hydrogel and its biological applications. Chin. Chem. Lett., 2021, 32(5), 1603-1614. doi:10.1016/j.cclet.2020.11.073http://dx.doi.org/10.1016/j.cclet.2020.11.073
Jian N. N.; Guo R.; Zuo L.; Sun Y. B.; Xue Y.; Liu J.; Zhang K. Bioinspired self-growing hydrogels by harnessing interfacial polymerization. Adv. Mater., 2023, 35(12), e2210609. doi:10.1002/adma.202370082http://dx.doi.org/10.1002/adma.202370082
Mao S. H.; Liu W.; Xie Z. M.; Zhang D.; Zhou J. H.; Xu Y. S.; Fu B. P.; Zheng S. Y.; Zhang L.; Yang J. T. In situ growth of functional hydrogel coatings by a reactive polyurethane for biomedical devices. ACS Appl. Mater. Interfaces, 2023, 15, 56652-56664. doi:10.1021/acsami.3c10683http://dx.doi.org/10.1021/acsami.3c10683
Zhang K. Y.; Feng Q.; Fang Z. W.; Gu L.; Bian L. M. Structurally dynamic hydrogels for biomedical applications: pursuing a fine balance between macroscopic stability and microscopic dynamics. Chem. Rev., 2021, 121(18), 11149-11193. doi:10.1021/acs.chemrev.1c00071http://dx.doi.org/10.1021/acs.chemrev.1c00071
Chen P.; Yu C. H.; Chen J.; Xu L. J.; Liu H. J. DNA-based supramolecular hydrogels: From construction strategies to biomedical applications. Chin. Chem. Lett., 2023, 34(12), 108627. doi:10.1016/j.cclet.2023.108627http://dx.doi.org/10.1016/j.cclet.2023.108627
Li J.; Mo L. T.; Lu C. H.; Fu T.; Yang H. H.; Tan W. H. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications. Chem. Soc. Rev., 2016, 45(5), 1410-1431. doi:10.1039/c5cs00586hhttp://dx.doi.org/10.1039/c5cs00586h
Wei Y. H.; Wang K. Z.; Luo S. H.; Li F.; Zuo X. L.; Fan C. H.; Li Q. Programmable DNA hydrogels as artificial extracellular matrix. Small, 2022, 18(36), e2107640. doi:10.1002/smll.202107640http://dx.doi.org/10.1002/smll.202107640
Zhang Z. J.; Zhou Y.; Tong H.; Sun X. C.; Lv Z. C.; Yong J. K.; Wu Y. C.; Xiang X. L.; Ding F.; Zuo X. L.; Li F.; Xia Q.; Feng H.; Fan C. H. Programmable DNA hydrogel assisting microcrystal formulations for sustained locoregional drug delivery in surgical residual tumor lesions and lymph node metastasis. Adv. Healthc. Mater., 2023, 2303762. doi:10.1002/adhm.202303762http://dx.doi.org/10.1002/adhm.202303762
潘玙璠, 丁雨樵, 董原辰, 刘冬生. DNA超分子水凝胶的构筑、功能化与生物医学应用. 高分子学报, 2023, 54(7), 1012-1027. doi:10.11777/j.issn1000-3304.2022.22380http://dx.doi.org/10.11777/j.issn1000-3304.2022.22380
Ren N.; Sun R.; Xia K.; Zhang Q.; Li W.; Wang F.; Zhang X. L.; Ge Z. L.; Wang L. H.; Fan C. H.; Zhu Y. DNA-based hybrid hydrogels sustain water-insoluble ophthalmic therapeutic delivery against allergic conjunctivitis. ACS Appl. Mater. Interfaces, 2019, 11(30), 26704-26710. doi:10.1021/acsami.9b08652http://dx.doi.org/10.1021/acsami.9b08652
Wang D. Y.; Duan J.; Liu J. W.; Yi H.; Zhang Z. Z.; Song H. W.; Li Y. C.; Zhang K. X. Stimuli-responsive self-degradable DNA hydrogels: design, synthesis, and applications. Adv. Healthc. Mater., 2023, 12(16), e2203031. doi:10.1002/adhm.202203031http://dx.doi.org/10.1002/adhm.202203031
Wang C.; Zhang J. J. Recent advances in stimuli-responsive DNA-based hydrogels. ACS Appl. Bio Mater., 2022, 5(5), 1934-1953. doi:10.1021/acsabm.1c01197http://dx.doi.org/10.1021/acsabm.1c01197
Hu Y.; Fan C. H. Nanocomposite DNA hydrogels emerging as programmable and bioinstructive materials systems. Chem, 2022, 8(6), 1554-1566. doi:10.1016/j.chempr.2022.04.003http://dx.doi.org/10.1016/j.chempr.2022.04.003
Tang J. P.; Liang A. Q.; Yao C.; Yang D. Y. Assembly of rolling circle amplification-produced ultralong single-stranded DNA to construct biofunctional DNA materials. Chemistry, 2023, 29(9), e202202673. doi:10.1002/chem.202202673http://dx.doi.org/10.1002/chem.202202673
Lee J. B.; Peng S. M.; Yang D. Y.; Roh Y. H.; Funabashi H.; Park N.; Rice E. J.; Chen L. W.; Long R.; Wu M. M.; Luo D. A mechanical metamaterial made from a DNA hydrogel. Nat. Nanotechnol., 2012, 7(12), 816-820. doi:10.1038/nnano.2012.211http://dx.doi.org/10.1038/nnano.2012.211
Tang J. P.; Jia X. M.; Li Q.; Cui Z.; Liang A. Q.; Ke B.; Yang D. Y.; Yao C. A DNA-based hydrogel for exosome separation and biomedical applications. Proc. Natl. Acad. Sci. USA, 2023, 120(28), e2303822120. doi:10.1073/pnas.2303822120http://dx.doi.org/10.1073/pnas.2303822120
Yao C.; Tang H.; Wu W. J.; Tang J. P.; Guo W. W.; Luo D.; Yang D. Y. Double rolling circle amplification generates physically cross-linked DNA network for stem cell fishing. J. Am. Chem. Soc., 2020, 142(7), 3422-3429. doi:10.1021/jacs.9b11001http://dx.doi.org/10.1021/jacs.9b11001
Um S. H.; Lee J. B.; Park N.; Kwon S. Y.; Umbach C. C.; Luo D. Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater., 2006, 5(10), 797-801. doi:10.1038/nmat1741http://dx.doi.org/10.1038/nmat1741
Xing Y. Z.; Cheng E. J.; Yang Y.; Chen P.; Zhang T.; Sun Y. W.; Yang Z. Q.; Liu D. S. Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness. Adv. Mater., 2011, 23(9), 1117-1121. doi:10.1002/adma.201003343http://dx.doi.org/10.1002/adma.201003343
Cheng E. J.; Xing Y. Z.; Chen P.; Yang Y.; Sun Y. W.; Zhou D. J.; Xu L. J.; Fan Q. H.; Liu D. S. A pH-triggered, fast-responding DNA hydrogel. Angew. Chem. Int. Ed, 2009, 48(41), 7660-7663. doi:10.1002/anie.200902538http://dx.doi.org/10.1002/anie.200902538
He X. Y.; Sun N.; Jia H.; Hou M. M.; Tan Z. P.; Lu X. Q. Antifouling electrochemical biosensor based on conductive hydrogel of DNA scaffold for ultrasensitive detection of ATP. ACS Appl. Mater. Interfaces, 2022, 14(36), 40624-40632. doi:10.1021/acsami.2c10081http://dx.doi.org/10.1021/acsami.2c10081
Lv Z. Y.; Huang M. X.; Li P. R.; Xu M. D.; Yao C.; Yang D. Y. Hybridization chain reaction-based DNA nanomaterials for biosensing, bioimaging and therapeutics. Chin. Chem. Lett., 2024, 35(2), 108601. doi:10.1016/j.cclet.2023.108601http://dx.doi.org/10.1016/j.cclet.2023.108601
Dirks R. M.; Pierce N. A. Triggered amplification by hybridization chain reaction. Proc. Natl. Acad. Sci. USA, 2004, 101(43), 15275-15278. doi:10.1073/pnas.0407024101http://dx.doi.org/10.1073/pnas.0407024101
Wang J. B.; Chao J.; Liu H. J.; Su S.; Wang L. H.; Huang W.; Willner I.; Fan C. H. Clamped hybridization chain reactions for the self-assembly of patterned DNA hydrogels. Angew. Chem. Int. Ed., 2017, 56(8), 2171-2175. doi:10.1002/anie.201610125http://dx.doi.org/10.1002/anie.201610125
Song P.; Ye D. K.; Zuo X. L.; Li J.; Wang J. B.; Liu H. J.; Hwang M. T.; Chao J.; Su S.; Wang L. H.; Shi J. Y.; Wang L. H.; Huang W.; Lal R.; Fan C. H. DNA hydrogel with aptamer-toehold-based recognition, cloaking, and decloaking of circulating tumor cells for live cell analysis. Nano Lett., 2017, 17(9), 5193-5198. doi:10.1021/acs.nanolett.7b01006http://dx.doi.org/10.1021/acs.nanolett.7b01006
Ye D. K.; Li M.; Zhai T. T.; Song P.; Song L.; Wang H.; Mao X. H.; Wang F.; Zhang X. L.; Ge Z. L.; Shi J. Y.; Wang L. H.; Fan C. H.; Li Q.; Zuo X. L. Encapsulation and release of living tumor cells using hydrogels with the hybridization chain reaction. Nat. Protoc., 2020, 15(7), 2163-2185. doi:10.1038/s41596-020-0326-4http://dx.doi.org/10.1038/s41596-020-0326-4
Shi P.; Zhao N.; Coyne J.; Wang Y. DNA-templated synthesis of biomimetic cell wall for nanoencapsulation and protection of mammalian cells. Nat. Commun., 2019, 10(1), 2223. doi:10.1038/s41467-019-10231-yhttp://dx.doi.org/10.1038/s41467-019-10231-y
Cangialosi A.; Yoon C.; Liu J. Y.; Huang Q.; Guo J. K.; Nguyen T. D.; Gracias D. H.; Schulman R. DNA sequence-directed shape change of photopatterned hydrogels via high-degree swelling. Science, 2017, 357(6356), 1126-1130. doi:10.1126/science.aan3925http://dx.doi.org/10.1126/science.aan3925
Kahn J. S.; Trifonov A.; Cecconello A.; Guo W. W.; Fan C. H.; Willner I. Integration of switchable DNA-based hydrogels with surfaces by the hybridization chain reaction. Nano Lett., 2015, 15(11), 7773-7778. doi:10.1021/acs.nanolett.5b04101http://dx.doi.org/10.1021/acs.nanolett.5b04101
Yu X. Y.; Lin W.; Lai Q.; Song J.; Liu Y. L.; Su R.; Niu Q.; Yang L.; Yang C. Y.; Zhang H. M.; Zhu Z. ARMOR: auto-assembled resilient biomimetic calcified ornaments for selective cell protection by dual-aptamer-driven hybridization chain reaction. Angew. Chem. Int. Ed., 2023, 62(17), e202301083. doi:10.1002/anie.202301083http://dx.doi.org/10.1002/anie.202301083
Li Y. J.; Chen J.; Dong Y. C.; Liu H. J.; Liu D. S. Construction of pH-triggered DNA hydrogels based on hybridization chain reactions. Chem. Res. Chin. Univ., 2020, 36(2), 243-246. doi:10.1007/s40242-019-0034-1http://dx.doi.org/10.1007/s40242-019-0034-1
Nagahara S.; Matsuda T. Hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers. Polym. Gels Netw., 1996, 4(2), 111-127. doi:10.1016/0966-7822(96)00001-9http://dx.doi.org/10.1016/0966-7822(96)00001-9
Kahn J. S.; Hu Y. W.; Willner I. Stimuli-responsive DNA-based hydrogels: from basic principles to applications. Acc. Chem. Res., 2017, 50(4), 680-690. doi:10.1021/acs.accounts.6b00542http://dx.doi.org/10.1021/acs.accounts.6b00542
Hu Y. W.; Kahn J. S.; Guo W. W.; Huang F. J.; Fadeev M.; Harries D.; Willner I. Reversible modulation of DNA-based hydrogel shapes by internal stress interactions. J. Am. Chem. Soc., 2016, 138(49), 16112-16119. doi:10.1021/jacs.6b10458http://dx.doi.org/10.1021/jacs.6b10458
Guo W. W.; Qi X. J.; Orbach R.; Lu C. H.; Freage L.; Mironi-Harpaz I.; Seliktar D.; Yang H. H.; Willner I. Reversible Ag+-crosslinked DNA hydrogels. Chem. Commun., 2014, 50(31), 4065-4068. doi:10.1039/c3cc49140dhttp://dx.doi.org/10.1039/c3cc49140d
Li Y. Q.; Gao H.; Qi Z. Y.; Huang Z. C.; Ma L. Z.; Liu J. W. Freezing-assisted conjugation of unmodified diblock DNA to hydrogel nanoparticles and monoliths for DNA and Hg2+ sensing. Angew. Chem. Int. Ed, 2021, 60(23), 12985-12991. doi:10.1002/anie.202102330http://dx.doi.org/10.1002/anie.202102330
Huang F. J.; Chen M. X.; Zhou Z. X.; Duan R. L.; Xia F.; Willner I. Spatiotemporal patterning of photoresponsive DNA-based hydrogels to tune local cell responses. Nat. Commun., 2021, 12(1), 2364. doi:10.1038/s41467-021-22645-8http://dx.doi.org/10.1038/s41467-021-22645-8
Liu C.; Gou S. Y.; Bi Y. H.; Gao Q.; Sun J. J.; Hu S. J.; Guo W. W. Smart DNA-gold nanoparticle hybrid hydrogel film based portable, cost-effective and storable biosensing system for the colorimetric detection of lead (II) and uranyl ions. Biosens. Bioelectron., 2022, 210, 114290. doi:10.1016/j.bios.2022.114290http://dx.doi.org/10.1016/j.bios.2022.114290
Tang J. P.; Ou J. H.; Zhu C. X.; Yao C.; Yang D. Y. Flash synthesis of DNA hydrogel via supramacromolecular assembly of DNA chains and upconversion nanoparticles for cell engineering. Adv. Funct. Mater., 2022, 32(12), 2107267. doi:10.1002/adfm.202107267http://dx.doi.org/10.1002/adfm.202107267
Yang Q.; Miao Y. L.; Luo J. S.; Chen Y. H.; Wang Y. J. Amyloid fibril and clay nanosheet dual-nanoengineered DNA dynamic hydrogel for vascularized bone regeneration. ACS Nano, 2023, 17(17), 17131-17147. doi:10.1021/acsnano.3c04816http://dx.doi.org/10.1021/acsnano.3c04816
Das S.; Solra M.; Sahoo J.; Srivastava A.; Fathima S.; De M.; Rana S. G-quadruplex hydrogel-based stimuli-responsive high-internal-phase emulsion scaffold for biocatalytic cascades and synergistic antimicrobial activity. Chem. Mater., 2024, 36(2), 759-771. doi:10.1021/acs.chemmater.3c02173http://dx.doi.org/10.1021/acs.chemmater.3c02173
Wu S. H.; Xia X.; Zhou R. H.; Zhao H. Guanosine-based supramolecular hydrogels with dynamic time-dependent fluorescence for information encryption. Macromolecules, 2023, 56(15), 5813-5824. doi:10.1021/acs.macromol.3c00505http://dx.doi.org/10.1021/acs.macromol.3c00505
Kotova O.; O'Reilly C.; Barwich S. T.; MacKenzie L. E.; Lynes A. D.; Savyasachi A. J.; Ruether M.; Pal R.; Möbius M. E.; Gunnlaugsson T. Lanthanide luminescence from supramolecular hydrogels consisting of bio-conjugated picolinic-acid-based guanosine quadruplexes. Chem, 2022, 8(5), 1395-1414. doi:10.1016/j.chempr.2022.01.015http://dx.doi.org/10.1016/j.chempr.2022.01.015
Peters G. M.; Skala L. P.; Plank T. N.; Hyman B. J.; Manjunatha Reddy G. N.; Marsh A.; Brown S. P.; Davis J. T. A G4⋅K+ hydrogel stabilized by an anion. J. Am. Chem. Soc., 2014, 136(36), 12596-12599. doi:10.1021/ja507506chttp://dx.doi.org/10.1021/ja507506c
Ge Z. L.; Gu H. Z.; Li Q.; Fan C. H. Concept and development of framework nucleic acids. J. Am. Chem. Soc., 2018, 140(51), 17808-17819. doi:10.1021/jacs.8b10529http://dx.doi.org/10.1021/jacs.8b10529
Peng Y. H.; Hsiao S. K.; Gupta K.; Ruland A.; Auernhammer G. K.; Maitz M. F.; Boye S.; Lattner J.; Gerri C.; Honigmann A.; Werner C.; Krieg E. Dynamic matrices with DNA-encoded viscoelasticity for cell and organoid culture. Nat. Nanotechnol., 2023, 18(12), 1463-1473. doi:10.1038/s41565-023-01483-3http://dx.doi.org/10.1038/s41565-023-01483-3
Lachance-Brais C.; Rammal M.; Asohan J.; Katolik A.; Luo X.; Saliba D.; Jonderian A.; Damha M. J.; Harrington M. J.; Sleiman H. F. Small molecule-templated DNA hydrogel with record stiffness integrates and releases DNA nanostructures and gene silencing nucleic acids. Adv. Sci., 2023, 10(12), e2205713. doi:10.1002/advs.202205713http://dx.doi.org/10.1002/advs.202205713
Tang J. P.; Yao C.; Gu Z.; Jung S.; Luo D.; Yang D. Y. Super-soft and super-elastic DNA robot with magnetically driven navigational locomotion for cell delivery in confined space. Angew. Chem. Int. Ed., 2020, 59(6), 2490-2495. doi:10.1002/anie.201913549http://dx.doi.org/10.1002/anie.201913549
Uzumcu A. T.; Guney O.; Okay O. Highly stretchable DNA/clay hydrogels with self-healing ability. ACS Appl. Mater. Interfaces, 2018, 10(9), 8296-8306. doi:10.1021/acsami.8b00168http://dx.doi.org/10.1021/acsami.8b00168
Hu Y. W.; Gao S. J.; Lu H. F.; Ying J. Y. Acid-resistant and physiological pH-responsive DNA hydrogel composed of A-motif and i-motif toward oral insulin delivery. J. Am. Chem. Soc., 2022, 144(12), 5461-5470. doi:10.1021/jacs.1c13426http://dx.doi.org/10.1021/jacs.1c13426
Yue L.; Wang S.; Wulf V.; Willner I. Stiffness-switchable DNA-based constitutional dynamic network hydrogels for self-healing and matrix-guided controlled chemical processes. Nat. Commun., 2019, 10(1), 4774. doi:10.1038/s41467-019-12697-2http://dx.doi.org/10.1038/s41467-019-12697-2
Guo J. R.; Zhu Y. L.; Miao P. Nano-impact electrochemical biosensing based on a CRISPR-responsive DNA hydrogel. Nano Lett., 2023, 23(23), 11099-11104. doi:10.1021/acs.nanolett.3c03448http://dx.doi.org/10.1021/acs.nanolett.3c03448
Yang B.; Zhou B. N.; Li C. F.; Li X. W.; Shi Z. W.; Li Y. X.; Zhu C. Y.; Li X.; Hua Y.; Pan Y. F.; He J.; Cao T. Y.; Sun Y. W.; Liu W. L.; Ge M.; Yang Y. R.; Dong Y. C.; Liu D. S. A biostable l-DNA hydrogel with improved stability for biomedical applications. Angew. Chem. Int. Ed, 2022, 61(30), e202202520. doi:10.1002/anie.202202520http://dx.doi.org/10.1002/anie.202202520
Yang Q. Q.; Wang Y. Y.; Liu T. F.; Wu C. X.; Li J. Z.; Cheng J. L.; Wei W.; Yang F.; Zhou L. P.; Zhang Y. F.; Yang S. S.; Dong H. F. Microneedle array encapsulated with programmed DNA hydrogels for rapidly sampling and sensitively sensing of specific microRNA in dermal interstitial fluid. ACS Nano, 2022, 16(11), 18366-18375. doi:10.1021/acsnano.2c06261http://dx.doi.org/10.1021/acsnano.2c06261
Zhong R. B.; Tang Q.; Wang S. P.; Zhang H. B.; Zhang F.; Xiao M. S.; Man T. T.; Qu X. M.; Li L.; Zhang W. J.; Pei H. Self-assembly of enzyme-like nanofibrous G-molecular hydrogel for printed flexible electrochemical sensors. Adv. Mater., 2018, 30(12), e1706887. doi:10.1002/adma.201706887http://dx.doi.org/10.1002/adma.201706887
Han J. P.; Cui Y. C.; Han X. P.; Liang C. Y.; Liu W. G.; Luo D.; Yang D. Y. Super-soft DNA/dopamine-grafted-dextran hydrogel as dynamic wire for electric circuits switched by a microbial metabolism process. Adv. Sci., 2020, 7(13), 2000684. doi:10.1002/advs.202000684http://dx.doi.org/10.1002/advs.202000684
Xiong Z.; Achavananthadith S.; Lian S.; Madden L. E.; Ong Z. X.; Chua W.; Kalidasan V.; Li Z. P.; Liu Z.; Singh P.; Yang H. T.; Heussler S. P.; Kalaiselvi S. M. P.; Breese M. B. H.; Yao H. C.; Gao Y. J.; Sanmugam K.; Tee B. C. K.; Chen P. Y.; Loke W.; Lim C. T.; Chiang G. S. H.; Tan B. Y.; Li H.; Becker D. L.; Ho J. S. A wireless and battery-free wound infection sensor based on DNA hydrogel. Sci. Adv., 2021, 7(47), eabj1617. doi:10.1126/sciadv.abj1617http://dx.doi.org/10.1126/sciadv.abj1617
Liu X.; Zhang Q.; Gao Z. J.; Hou R. B.; Gao G. H. Bioinspired adhesive hydrogel driven by adenine and thymine. ACS Appl. Mater. Interfaces, 2017, 9(20), 17645-17652. doi:10.1021/acsami.7b04832http://dx.doi.org/10.1021/acsami.7b04832
Ma X. D.; Wang C. Y.; Yuan W. Z.; Xie X. Y.; Song Y. Highly adhesive, conductive, and self-healing hydrogel with triple cross-linking inspired by mussel and DNA for wound adhesion and human motion sensing. ACS Appl. Polym. Mater., 2021, 3(12), 6586-6597. doi:10.1021/acsapm.1c01288http://dx.doi.org/10.1021/acsapm.1c01288
Hur J.; Im K.; Hwang S.; Choi B.; Kim S.; Hwang S.; Park N.; Kim K. DNA hydrogel-based supercapacitors operating in physiological fluids. Sci. Rep., 2013, 3, 1282. doi:10.1038/srep01282http://dx.doi.org/10.1038/srep01282
Mitta S. B.; Harpalsinh R.; Kim J.; Park H. S.; Um S. H. Flexible supercapacitor with a pure DNA gel electrolyte. Adv. Mater. Interfaces, 2022, 9(14), 2200133. doi:10.1002/admi.202270081http://dx.doi.org/10.1002/admi.202270081
Gu C. N.; Peng Y.; Li J. J.; Wang H.; Xie X. Q.; Cao X. Y.; Liu C. S. Supramolecular G4 eutectogels of guanosine with solvent-induced chiral inversion and excellent electrochromic activity. Angew. Chem. Int. Ed, 2020, 59(42), 18768-18773. doi:10.1002/anie.202009332http://dx.doi.org/10.1002/anie.202009332
Thakur N.; Chaudhary A.; Chakraborty A.; Kumar R.; Sarma T. K. Ion conductive phytic acid-G quadruplex hydrogel as electrolyte for flexible electrochromic device. ChemNanoMat, 2021, 7(6), 613-619. doi:10.1002/cnma.202100072http://dx.doi.org/10.1002/cnma.202100072
Allen M. E.; Hindley J. W.; Baxani D. K.; Ces O.; Elani Y. Hydrogels as functional components in artificial cell systems. Nat. Rev. Chem., 2022, 6(8), 562-578. doi:10.1038/s41570-022-00404-7http://dx.doi.org/10.1038/s41570-022-00404-7
0
浏览量
304
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构